For More On The Fermi Paradox And Why Alien Life Hasn’t Found Us Yet. (Infographic Via Futurism)

For More On The Fermi Paradox And Why Alien Life Hasn’t Found Us Yet. (Infographic Via Futurism)
For More On The Fermi Paradox And Why Alien Life Hasn’t Found Us Yet. (Infographic Via Futurism)
For More On The Fermi Paradox And Why Alien Life Hasn’t Found Us Yet. (Infographic Via Futurism)
For More On The Fermi Paradox And Why Alien Life Hasn’t Found Us Yet. (Infographic Via Futurism)
For More On The Fermi Paradox And Why Alien Life Hasn’t Found Us Yet. (Infographic Via Futurism)

For more on the Fermi Paradox and why alien life hasn’t found us yet. (Infographic via futurism)

More Posts from Samstein1012 and Others

10 years ago

RIP

While Flying Over Boston, Leonard Nimoy’s Birthplace, NASA Astronaut Terry Virts Pays Tribute To The

While flying over Boston, Leonard Nimoy’s birthplace, NASA Astronaut Terry Virts pays tribute to the Star Trek star http://nbcnews.to/1AUElvf


Tags
8 years ago

6 Ways Earth Observations Tackle Real-World Problems

This summer, 30 research projects were launched by recent college graduates and early career professionals as part of our DEVELOP program. The aim is to use our satellite observations of Earth to address an environmental or public policy issue. And they have just 10 weeks to do it! On Aug. 10, 2016, the “DEVELOPers” gathered at our Headquarters in Washington, DC to showcase their results. So, how can Earth observations solve real-world problems? Let’s take a look:

image

1. They help land managers identify the locations of invasive species.

Austin Haney, DEVELOP project co-lead at University of Georgia, has seen first-hand how an invasive species can affect the ecosystem of Lake Thurmond, a large reservoir that straddles the border between Georgia and South Carolina. Birds in the area “behave visibly different,” he said, after they consume a toxic cyanobacteria that lives on Hydrilla verticillata, an invasive aquatic plant. Ingesting the toxin causes a neurodegenerative disease and ultimately death. Scores of birds have been found dead near lake areas where large amounts of the toxin-supporting Hydrilla grow. To help lake managers better address the situation, Haney and project members developed a tool that uses data from the Landsat 8 satellite to map the distribution of Hydrilla across the lake. 

Image Credit: NASA/Bill Ingalls

image

2. They help identify wildlife habitat threatened by wildfires.

Maps that depict habitat and fire risk in eastern Idaho previously stopped short of Craters of the Moon National Monument and Preserve, where shrubs and grasses transition to a sea of ankle-twisting basalt. But the environment is not as inhospitable as it first appears. Throughout the monument there are more than 500 kipukas —pockets of older lava capable of supporting some vegetation. That means it is also prone to burning. Project lead Courtney Ohr explained how her team used data from the Landsat 8 and Sentinel-2 satellites to develop a model that can simulate the area’s susceptibility to wildfires. Decision makers can use this model to monitor the remote wildlife habitat from afar.

Image Credit: NASA/Bill Ingalls

image

3. In conjunction with Instagram, they help find seaweed blooms

Who knew that Instagram could be a tool for science? One DEVELOP team searched for photographs of massive seaweed (sargassum) blooms in the Caribbean, mapped the locations, and then checked what satellites could see. In the process, they tested two techniques for finding algae and floating vegetation in the ocean.

Image Credit: Caribbean Oceans Team

image

4. They help conserve water by reducing urban stormwater runoff.

Atlanta’s sewer system is among the nation’s most expensive. Yet, the city still struggles with stormwater. It’s an uphill climb as new construction paves over more of the city, hindering its ability to absorb rain. The University of Georgia DEVELOP team partnered with The Nature Conservancy to address the problem.

Using satellite imagery, the team was able to pinpoint areas well-poised to capture more of the city’s runoff. They identified 17 communities ripe for expanding green infrastructure and reforestation. The team used the Land-Use Conflict Identification Strategy and Soil and Water Assessment Tool models and Landsat and Terra satellite data. Their analysis provides local groups with a working picture of the city’s water resources.

Image Credit: NASA/Bill Ingalls

image

5. They show the spread of the mite eating away Puerto Rico’s palm trees.

The red palm mite has devastated Puerto Rico’s trees in recent years. The insect chewed its way through coconut palms, bananas, and plantains on the island in the recent decade. Its spread has hurt crops across the Caribbean.

A DEVELOP team led by Sara Lubkin analyzed satellite imagery to track the mites’ rapid spread from 2002. The team mapped changes to vegetation, such as yellowing, and differences in canopy structure. They made use of imagery from Landsat, Hyperion, IKONOS, and aerial views. Their work can be used to mitigate current mite infestations and monitor and prevent future ones.

Image Credit: NASA/Bill Ingalls

image

6. They evaluate landslide-prone areas in the developing world

One team of DEVELOPers took on several projects to aid people in developing nations. This team from Alabama examined satellite imagery to find past landslides in the African nation of Malawi. Factors such as flooding after long periods of drought have made the country increasingly prone to landslides. Blending maps of the landscape, rainfall data, and population centers, the young researchers assessed the areas most at risk—and most in need of education and support—from landslides.

Image Credit: East Africa Disasters II Team

Want to read more about DEVELOP projects, or get involved? Summaries, images, and maps of current and past projects can be viewed HERE. You can also learn how to apply for the DEVELOP program HERE.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

8 years ago

Space Station Science: Biological Research

image

Each month, we highlight a different research topic on the International Space Station. In August, our focus is biological research. Learning how spaceflight affects living organisms will help us understand potential health risks related to humans on long duration missions, including our journey to Mars.

image

Cells, microbes, animals and plants are affected by microgravity, and studying the processes involved in adaptation to spaceflight increases our fundamental understanding of biological processes on Earth. Results on Earth from biological research in space include the development of new medications, improved agriculture, advancements in tissue engineering and regeneration, and more. 

Take a look at a few of the biological research experiments performed on space station:

Biomolecule Sequencer

image

Living organisms contain DNA, and sequencing DNA is a powerful way to understand how they respond to changing environments. The Biomolecule Sequencer experiment hopes to demonstrate (for the first time) that DNA sequencing is feasible in an orbiting spacecraft. Why? A space-based DNA sequencer could identify microbes, diagnose diseases and understand crew member health, and potentially help detect DNA- based life elsewhere in the solar system.

Ant-stronauts

image

Yes, ant-stronauts…as in ants in space. These types of studies provide insights into how ants answer collective search problems. Watching how the colony adapts as a unit in the quest for resources in extreme environments, like space, provides data that can be used to build algorithms with varied applications. Understanding how ants search in different conditions could have applications for robotics.

TAGES

image

The TAGES experiment (Transgenic Arabidopsis Gene Expression System) looks to see how microgravity impacts the growth of plant roots. Fluorescent markers placed on the plant’s genes allow scientists to study root development of Arabidopsis (a cress plant) grown on the space station. Evidence shows that directional light in microgravity skews root growth to the right, rather than straight down from the light source. Root growth patters on station mimic that of plants grown at at 45% degree angle on Earth. Space flight appears to slow the rate of the plant’s early growth as well.

Heart Cells

image

Spaceflight can cause a suite of negative health effects, which become more problematic as crew members stay in orbit for long periods of time. Effects of Microgravity on Stem Cell-Derived Cardiomycytes (Heart Cells) studies the human heart, specifically how heart muscle tissue contracts, grows and changes in microgravity. Understanding how heart muscle cells change in space improves efforts for studying disease, screening drugs and conducting cell replacement therapy for future space missions.

Medaka Fish

image

Chew on these results…Jaw bones of Japanese Medaka fish in microgravity show decreased mineral density and increased volume of osteoclasts, cells that break down bone tissue. Results from this study improve our understanding of the mechanisms behind bone density and organ tissue changes in space.

These experiments, and many others, emphasize the importance of biological research on the space station. Understanding the potential health effects for crew members in microgravity will help us develop preventatives and countermeasures.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

10 years ago
Explanation: Big, Beautiful Spiral Galaxy NGC 7331 is Often Touted As An Analog To Our OwnMilky Way.

Explanation: Big, beautiful spiral galaxy NGC 7331 is often touted as an analog to our ownMilky Way. About 50 million light-years distant in the northern constellation Pegasus, NGC 7331 was recognized early on as a spiral nebulaand is actually one of the brighter galaxies notincluded in Charles Messier''s famous 18th century catalog. Since the galaxy''s disk is inclined to our line-of-sight, long telescopic exposures often result in an image that evokes a strong sense of depth. The effect is further enhanced in this sharp image from a small telescope by galaxies that lie beyond the gorgeous island universe. The most prominent background galaxies are about one tenth theapparent size of NGC 7331 and so lie roughly ten times farther away. Their close alignment on the sky with NGC 7331 occurs just by chance. Seen through faint foreground dust clouds lingering above the plane of Milky Way, this visual grouping of galaxies is known as theDeer Lick Group.

9 years ago

'NASA's Hubble Telescope Detects ‘Sunscreen' Layer on Distant Planet': via #NASA_APP


Tags
8 years ago
NASA Tested New “eyes” For Its Next Mars Rover Mission On A Rocket Built By Masten Space Systems

NASA tested new “eyes” for its next Mars rover mission on a rocket built by Masten Space Systems in Mojave, California, thanks in part to NASA’s Flight Opportunities Program, or FOP.

The agency’s Jet Propulsion Laboratory in Pasadena, California, is leading development of the Mars 2020 rover and its Lander Vision System, or LVS. In 2014, the prototype vision system launched 1,066 feet (325 meters) into the air aboard Masten’s rocket-powered “Xombie” test platform and helped guide the rocket to a precise landing at a predesignated target. LVS flew as part of a larger system of experimental landing technologies called the Autonomous Descent and Ascent Powered-flight Testbed, or ADAPT.

LVS, a camera-based navigation system, photographs the terrain beneath a descending spacecraft and matches it with onboard maps allowing the craft to detect its location relative to landing hazards, such as boulders and outcroppings.

The system can then direct the craft toward a safe landing at its primary target site or divert touchdown toward better terrain if there are hazards in the approaching target area. Image matching is aided by an inertial measurement unit that monitors orientation.

The Flight Opportunities Program funded the Masten flight tests under the Space Technology Mission Directorate. The program obtains commercial suborbital space launch services to pursue science, technology and engineering to mature technology relevant to NASA’s pursuit of space exploration. The program nurtures the emerging suborbital space industry and allows NASA to focus on deep space.

Andrew Johnson, principal investigator in development of the Lander Vision System development, said the tests built confidence that the vision system will enable Mars 2020 to land safely.

“By providing funding for flight tests, FOP motivated us to build guidance, navigation and control payloads for testing on Xombie,” Johnson said. “In the end we showed a closed loop pinpoint landing demo that eliminated any technical concerns with flying the Lander Vision System on Mars 2020.”

According to “Lander Vision System for Safe and Precise Entry Descent and Landing,” a 2012 abstract co-authored by Johnson for a Mars exploration workshop, LVS enables a broad range of potential landing sites for Mars missions.

Typically, Mars landers have lacked the ability to analyze and react to hazards, the abstract says. To avoid hazards, mission planners selected wide-open landing sites with mostly flat terrain. As a result, landers and rovers were limited to areas with relatively limited geological features, and were unable to access many sites of high scientific interest with more complex and hazardous surface morphology. LVS will enable safe landing at these scientifically compelling Mars landing sites.

An LVS-equipped mission allows for opportunities to land within more challenging environments and pursue new discoveries about Mars. With LVS baselined for inclusion on Mars 2020, the researchers are now focused on building the flight system ahead of its eventual role on the Red Planet.

To learn more about NASA’s flight opportunities program, visit:

https://flightopportunities.nasa.gov/

To read more about NASA’s Mars 2020 rover, visit:

http://mars.nasa.gov/mars2020/


Tags
8 years ago
Helix Nebula // NGC 7293

Helix Nebula // NGC 7293

9 years ago
Want To Take A Relaxing interstellar Vacation? Consider Visiting Kepler-16b, A World In A Binary Star

Want to take a relaxing interstellar vacation? Consider visiting Kepler-16b, a world in a binary star system. In fact Kepler-16b is the first discovered circumbinary planet. It was detected in a wide 229 day orbit around a close pair of cool, low-mass stars some 200 light-years away. The parent stars eclipse one another in their orbits, observed as a dimming of starlight. But Kepler-16b itself was discovered by following the additional very slight dimming produced during its transits. Like sci-fi planet Tatooine of Star Wars fame, two suns would set over its horizon. Still, Kepler 16b is probably not a Tatooine-like terrestrial desert world. Instead, Kepler 16b is thought to be a cold, uninhabitable planet with about the mass of Saturn and a gaseous surface ... so plan to dress accordingly. Or, choose another Visions of the Future vacation destination. For image credit and copyright guidance, please visit the image websitehttp://antwrp.gsfc.nasa.gov/apod/ap160220.html


Tags
8 years ago
ABRACADABRA (A Broadband/Resonant Approach To Cosmic Axion Detection With An Amplifying B-field Ring

ABRACADABRA (A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus), consists of a series of magnetic coils, wound in the shape of a toroid, or donut, which is then encased in a layer of superconducting metal and kept at temperatures just above absolute zero. The scientists plan to use a highly sensitive magnetometer, placed inside the donut hole, to detect any signs of axions’ influence. MIT physicists are proposing a new experiment to detect a dark matter particle called the axion. If successful, the effort could crack one of the most perplexing unsolved mysteries in particle physics, as well as finally yield a glimpse of dark matter. Axions are hypothetical elementary particles that are thought to be among the lightest particles in the universe — about one-quintillionth the size of a proton. These ultralight particles are virtually invisible, yet if they exist, axions and other yet-unobserved particles may make up 80 percent of the material in the universe, in the form of dark matter. In a paper published online in Physical Review Letters, the MIT team proposes an experiment to detect axions by simulating an extreme astrophysical phenomenon known as a magnetar — a type of neutron star that generates an immensely powerful magnetic field. The physicists reasoned that in the presence of an axion such a huge magnetic field should waver ever so slightly, producing a second, vastly smaller magnetic field as a signature of the axion itself. The team consists of MIT associate professor of physics Jesse Thaler, MIT Pappalardo Fellow Benjamin Safdi, and Yonatan Kahn PhD ’15, now a postdoc at Princeton University. Together, they designed an experiment to recreate the physics of a magnetar in a controlled laboratory environment, using technology borrowed from magnetic resonance imaging (MRI). The core of the experiment, which they’ve named ABRACADABRA (A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus), consists of a series of magnetic coils, wound in the shape of a toroid, or donut, which is then encased in a layer of superconducting metal and kept in a refrigerator at temperatures just above absolute zero, to minimize external noise. The scientists plan to use a highly sensitive magnetometer, placed inside the donut hole, to detect any signs of axions’ influence. “Axions are very strange, counterintuitive particles,” Thaler says. “They’re extremely light, with feeble interactions, and yet this particle may dominate the matter budget of the universe and be five times more abundant by mass than ordinary matter. So we really had to think hard on whether these particles are in principle detectable using current technology. It’s extremely daunting.” A “tantalizing” particle If they are detected, axions may also explain an outstanding dilemma in particle physics, known as the Strong CP (charge parity) problem: Since the 1970s, scientists have grown increasingly puzzled over what Safdi describes as “the indifference of neutrons to electric fields.” Neutrons are elementary particles that are found in the nucleus of almost every atom in matter, and they do not carry a net charge. “We don’t expect neutrons to accelerate in the presence of an electric field because they don’t carry electric charge, but you might expect them to rotate,” Safdi says. “That’s because we expect them to have an electric dipole moment, where you can think of a neutron having a plus charge on one side and a minus charge on the other. But from our current understanding, this rotation effect does not exist, whereas theory says it should.” Scientists have hypothesized that this bizarre effect may be explained by the axion, which would somehow remove a neutron’s electric dipole moment. If so, the axion would modify electric and magnetic phenomena in a way that could be detectable experimentally. “It’s very tantalizing to say there might be a particle that serves this deep purpose, and even more so if we were to detect the presence of these particles in the form of dark matter,” Thaler says. The hunt is on Currently, Thaler says most axion hunting has been carried out by researchers at the University of Washington who are running the Axion Dark Matter Experiment, or ADMX. The experiment uses a resonant microwave cavity, set within a large superconducting magnet, to detect very weak conversions of axions to microwave photons. The experiment is tuned to look for axions within a specific range of around one quadrillionth the mass of a proton. Thaler and his team realized that they could extend this range, and look for much smaller, lighter particles, on the order of one quintillionth the mass of a proton, by recreating the physics of magnetars, in the lab. “The Strong CP problem is associated with whether a neutron’s spin responds to electric effects, and you can kind of think of a magnetar as one gigantic spin with big magnetic fields,” Thaler explains. “If axions are coming in and changing the properties of nuclear matter to resolve the Strong CP problem, maybe axions can interact with this magnetar and allow you to see it in a new way. So the subtle effects of axions should be amplified.” The team’s prototype design is surprisingly small — “about the palm of your hand,” Safdi says. The researchers, who are theoretical physicists by training, are now working with experimentalists at MIT to build the prototype, which is designed to generate a baseline magnetic field of about 1 tesla, comparable to current MRI machines. If axions are present, that field should waver slightly, producing a very tiny oscillation at a frequency that is directly related to the axion’s mass. Using a high-precision magnetometer, Thaler hopes to pick up that frequency and ultimately use it to identify the axion’s size. “Only recently have there been many good ideas to search for [low-frequency axions],” says Gray Rybka, an assistant professor of physics at the University of Washington and an ADMX researcher, who was not involved in the research. “The experiment proposed here builds on previous ideas and, if the authors are correct, may be the most practical experimental configuration that can explore some of the plausible lower-frequency axion regimes.” “We have an instrument that’s sensitive to many wavelengths, and we can tickle it with an axion of one particular wavelength, and ABRACADABRA will resonate,” Thaler says. “And we will be going into uncharted territory, where we could possibly see dark matter from this prototype. That would be amazing.” This research was supported, in part, by the U.S. Department of Energy and the Alfred P. Sloan Foundation. 


Tags
  • thedrugdude
    thedrugdude reblogged this · 1 week ago
  • thedrugdude
    thedrugdude liked this · 1 week ago
  • baroquepencils
    baroquepencils reblogged this · 1 week ago
  • lost-carcosa
    lost-carcosa reblogged this · 1 week ago
  • thingshavechangedbobby
    thingshavechangedbobby liked this · 1 week ago
  • chernobog13
    chernobog13 liked this · 1 week ago
  • coolcalmcollector-blog
    coolcalmcollector-blog liked this · 1 week ago
  • gravitysgone
    gravitysgone liked this · 1 week ago
  • misadventuresofacasualotaku
    misadventuresofacasualotaku liked this · 1 week ago
  • gotham-at-nightfall
    gotham-at-nightfall reblogged this · 1 week ago
  • nburbsbibear
    nburbsbibear liked this · 1 week ago
  • thissometimepoet
    thissometimepoet liked this · 1 week ago
  • myloveliveshere
    myloveliveshere liked this · 1 week ago
  • davesnothere
    davesnothere liked this · 1 week ago
  • kangamommynow
    kangamommynow reblogged this · 1 week ago
  • kangamommynow
    kangamommynow liked this · 1 week ago
  • epicallyepicepilogue
    epicallyepicepilogue reblogged this · 1 week ago
  • epicallyepicepilogue
    epicallyepicepilogue liked this · 1 week ago
  • polariswind
    polariswind reblogged this · 4 weeks ago
  • noetickal
    noetickal liked this · 1 month ago
  • flyingincircles
    flyingincircles liked this · 1 month ago
  • rainbowchild421
    rainbowchild421 liked this · 1 month ago
  • comintoyoulive
    comintoyoulive reblogged this · 1 month ago
  • lovepropaganda
    lovepropaganda reblogged this · 1 month ago
  • popsydre
    popsydre liked this · 5 months ago
  • darkhairysandwich
    darkhairysandwich liked this · 7 months ago
  • feebeeks
    feebeeks liked this · 8 months ago
  • preakr
    preakr liked this · 10 months ago
  • sarahs-shadow
    sarahs-shadow reblogged this · 11 months ago
  • usdan51
    usdan51 liked this · 1 year ago
  • somethinggotoutofthepaintings
    somethinggotoutofthepaintings reblogged this · 1 year ago
  • trueankhatm
    trueankhatm liked this · 1 year ago
samstein1012 - AD ASTRA PER ASPERA
AD ASTRA PER ASPERA

Elon Musk,Electric Cars,MIT, Spacex, NASA, Tesla and Taylor Alison Swift

34 posts

Explore Tumblr Blog
Search Through Tumblr Tags