In 2013, Researchers Published A Shape Model Of Asteroid Bennu Based On Years Of Observations From Puerto

In 2013, researchers published a shape model of asteroid Bennu based on years of observations from Puerto Rico’s Arecibo Observatory. Their model depicted a rough diamond shape. Five years later, the OSIRIS-REx spacecraft has reached the asteroid, and data obtained from spacecraft’s cameras corroborate those ground-based telescopic observations of Bennu. 

The original model closely predicted the asteroid’s actual shape, with Bennu’s diameter, rotation rate, inclination and overall shape presented almost exactly as projected! This video shows the new shape model created using data from OSIRIS-REx’s approach to the asteroid.

One outlier from the predicted shape model is the size of the large boulder near Bennu’s south pole. The ground-based shape model calculated it to be at least 33 feet (10 meters) in height. Preliminary calculations show that the boulder is closer to 164 feet (50 meters) in height, with a width of approximately 180 feet (55 meters).

Also during the approach phase, OSIRIS-REx revealed water locked inside the clays that make up Bennu. The presence of hydrated minerals across the asteroid confirms that Bennu, a remnant from early in the formation of the solar system, is an excellent specimen for the OSIRIS-REx mission to study. Get all the details about this discovery HERE.

Learn more about OSIRIS-REx’s journey at nasa.gov/osirisrex. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

5 years ago

Science Coming Soon to a Space Station Near You

Dozens of science experiments will soon make their red carpet debuts on the International Space Station. They will arrive courtesy of a Dragon cargo spacecraft launched from Cape Canaveral Air Force Station in Florida. The starring players include investigations into 3D printing organ tissue, breaking up rocks and building bones.

Meet some of the experiments blasting off that could lead to the development of new technologies as well as improve life on Earth.

Grab yourself an (organ) tissue

Scientists and medical professionals have long dreamed of the day 3D printers can be used to create useable human organs. But pesky gravity seems to always get in the way.

image

Enter microgravity. The new BioFabrication Facility (BFF) will provide a platform to attempt the creation of this organ tissue on the space station, a potential first step towards creating entire human organs in space.

Put down your pickaxe and pick up some microbes

Extracting minerals from rocks doesn’t always require brute force. Microbes can be deployed for the same purpose in a process called bio-mining. While common on Earth, the method still needs to be explored in space to see if it can eventually help explorers on the Moon and Mars. The BioRock investigation will examine the interactions between microbes and rocks and see if microgravity could limit the use of bio-mining by restricting bacterial growth.

image

Keep rolling along 

Goodyear Tire will investigate if microgravity can help improve the silica design process, silica rubber formation and tire manufacturing. This investigation could lead to improvements like better tire performance and increased fuel efficiency, putting a bit of cash back in your pocket.

image

When space gets on our nerves

Meet microglia: a type of immune defense cell found in the central nervous system. Better understanding nerve cells and their behavior in microgravity is crucial to protecting astronaut health. 

The Space Tango-Induced Pluripotent Stem Cells experiment will convert induced pluripotent stem cells (iPSCs) derived from patients with Parkinson’s and Multiple Sclerosis into different types of brain cells. Researchers will examine two things:

How microglial cells grow and move

Changes in gene expression in microgravity

image

Studying this process in microgravity could reveal mechanisms not previously understood and could lead to improved prevention and treatments for the diseases.

Space moss!

Moss, the tiny plants you see covering rocks and trees in the woods, change how they behave once the gravity in their environment changes. Space Moss compares the mosses grown aboard the space station with your typical run-of-the-mill Earth-bound moss.

image

This investigation will let researchers see how moss behavior in space could allow it to serve as a source of food and oxygen on future Moon or Mars bases.

A smooth connection 

Docking with the space station requires physical points for connections, and International Docking Adapters (IDAs) are providing a more sophisticated way of doing so.

image

IDA 3 will be attached to the Harmony mode, home to two existing IDAs. This adapter can accommodate commercial crew vehicle dockings, such as the first spacecraft to launch from U.S. soil since the space shuttle.

Building a better bone 

The Cell Science-02 investigation will improve our understanding of tissue regeneration and allow us to develop better countermeasures to fight loss of bone density by astronauts.

image

By examining the effects of microgravity on healing agents, this investigation may be able to assist people on Earth being treated for serious wounds or osteoporosis.

Want to learn about more investigations heading to the space station (or even ones currently under way)? Make sure to follow @ISS_Research on Twitter and Space Station Research and Technology News on Facebook. 

If you want to see the International Space Station with your own eyes, check out Spot the Station to see it pass over your town.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
3 years ago

Questions coming up from….

@monicagellar: Is it open for international students?

@Anonymous: How should high school students get involved?

@Anonymous: Can I apply if my subjects are physics and chemistry in college

@unsuspicious-nobody: Do you have plans to repeat this/do something similar for students in the future?


Tags
7 years ago

Will ordinary sunglasses suffice?

Unfortunately not. Sunglasses are not sufficient to ever look directly at the Sun. You can find glasses and filters that are safe here https://eclipse2017.nasa.gov/safety And if you can’t find any that will get to you in time for the eclipse on Monday (you can always use them to look at the Sun at a later time to see sunspots), you can make a pin hole projector! https://eclipse.aas.org/eye-safety/projection I think those are fantastic fun! 


Tags
5 years ago

Hopefully not a total dumb question but, YOUR ultimate goal as an astronaut?


Tags
6 years ago

Tools of the Trade: How Parker Solar Probe Will Study the Sun

Our Parker Solar Probe will get closer to the Sun than any spacecraft has ever gone – it will fly right through the Sun's corona, part of the Sun's atmosphere.

image

This spacecraft is full of cutting-edge technology, from its heat shield down to its guidance and control systems. It also carries four suites of advanced instruments designed to study the Sun in a multitude of ways.  

1. Measuring particles

Two of Parker Solar Probe's instrument suites are focused on measuring particles – electrons and ions – within the corona.

One of these particle-measuring instrument suites is SWEAP (Solar Wind Electrons Alphas and Protons). SWEAP counts the most common particles in the solar wind – the Sun's constant outflow of material – and measures their properties, like velocity, density and temperature. Gathering this information about solar wind particles will help scientists better understand why the solar wind reaches supersonic speeds and exactly which part of the Sun the particles come from.

image

One instrument in the SWEAP suite is the Solar Probe Cup. Most of the instruments on Parker Solar Probe stay safe and cool in the shadow of the heat shield, but the Solar Probe Cup is one of the few that sticks out. That's so it can capture and measure particles streaming straight out from the Sun, and it had to go through some intense testing to get ready for this position in the Sun's incredibly hot corona.  

image

Credit: Levi Hutmacher/Michigan Engineering

The ISʘIS suite (pronounced EE-sis, and including the symbol for the Sun in its acronym) also measures particles. ISʘIS is short for Integrated Science Investigation of the Sun, and this instrument suite measures particles that move faster – and therefore have more energy – than the solar wind.

These measurements will help scientists understand these particles' lifecycles – where they came from, how they got to be traveling so fast (these particles can reach speeds more than half the speed of light!) and what path they take as they travel away from the Sun and into interplanetary space.

image

2. Taking pictures – but not of the Sun's surface.

WISPR (Wide-Field Imager for Parker Solar Probe) has the only two cameras on Parker Solar Probe – but they're not pointed directly at the Sun. Instead, WISPR looks out the side of the spacecraft, in the direction it's traveling, looking at the space Parker Solar Probe is about to fly through. From that vantage point, WISPR captures images of structures within the corona like coronal mass ejections, or CMEs. CMEs are clouds of solar material that occasionally explode from the Sun at millions of miles per hour. Because this solar material is magnetized, CMEs can trigger geomagnetic storms when they reach Earth – which, in turn, can cause effects like auroras and even, in extreme cases, power outages.  

image

Right now, our observations of events like these come from satellites orbiting near Earth, so WISPR will give us a whole new perspective. And, scientists will be able to combine WISPR's images with Parker Solar Probe's direct particle measurements to get a better idea of how these structures change as they travel.

image

3. Studying electric & magnetic fields

The FIELDS instrument suite is appropriately named: It's what scientists will use to study the electric and magnetic fields in the corona.

Electric and magnetic fields are key to understanding what happens, not only on the Sun, but throughout space, because they are the primary driver accelerating charged particles. In particular, a process called magnetic reconnection – when magnetic field lines explosively realign, sending particles rocketing away at incredible speeds – is thought to drive solar explosions, as well as space weather effects on Earth, like the aurora.

image

FIELDS measures electric and magnetic field at high time resolution, meaning it takes lots of measurements in a short amount of time, to track these processes and shed some light on the mechanics underlying the Sun's behavior. FIELDS' measurements are precisely synced up with those of the SWEAP suite (one of the sets of instruments studying particles) so that scientists can match up the immediate effects that electric and magnetic fields have on the material of the solar wind.

image

Parker Solar Probe launches summer 2018 on its mission to study the Sun. Keep up with the latest on the mission at nasa.gov/solarprobe or follow us on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Friday Stroll? How About a Spacewalk?

On Friday, May 12, NASA astronauts Peggy Whitson and Jack Fischer will venture outside the International Space Station, into the vacuum of space, for a spacewalk.

image

Space Fact: This will be the 200th spacewalk performed on the space station!

You can watch their entire 6.5 hour spacewalk live online! (Viewing info below!) To tell the two astronauts apart in their bulky spacewalk suits, Whitson will be wearing the suit with red stripes, while Jack Fischer will have white stripes.

image

Space Fact: The first-ever spacewalk on the International Space Station was performed on Dec. 7, 1998.

For Peggy, this will be her ninth spacewalk! She actually holds the record for most spacewalks by a female astronaut. For Fischer, this is his first time in space, and will be his first spacewalk. You can see from the below Tweet, he’s pretty excited!

image

Once both astronauts venture outside the Quest airlock, their tasks will focus on:

Replacing a large avionic box that supplies electricity and data connections to the science experiments

Replacing hardware stored outside the station

Specifically, the ExPRESS Carrier Avionics, or ExPCA will be replaced with a unit delivered to the station last month aboard the Orbital ATK Cygnus cargo spacecraft.

image

Ever wonder how astronauts prepare and practice for these activities? Think about it, wearing a bulky spacesuit (with gloves!), floating in the vacuum of space, PLUS you have to perform complex tasks for a period of ~6.5 hours! 

In order to train on Earth, astronauts complete tasks in our Neutral Buoyancy Laboratory (NBL). It’s a gigantic pool with a full mock up of the International Space Station! Here’s a clip of astronauts practicing to install the ExPCA in that practice pool at Johnson Space Center in Houston. 

image

In addition, Whitson and Fischer will install a connector that will route data to the Alpha Magnetic Spectrometer and help the crew determine the most efficient way to conduct future maintenance on the cosmic ray detector.

image

The astronauts will also install a protective shield on the Pressurized Mating Adapter-3, which was moved in March. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

image

Finally, the duo will rig a new high-definition camera and pair of wireless antennas to the exterior of the outpost.

Watch the Spacewalk Live!

image

Live coverage will begin at 6:30 a.m. EDT, with spacewalk activities starting at 8 a.m. EDT. 

Stream the entire spacewalk live online at nasa.gov/live 

OR 

Watch live on the International Space Station Facebook page starting at 7:00 a.m. EDT

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Experience How Microgravity Affects the Human Body

Now is your chance to experience what it’s like to live and work on the International Space Station! The new NASA Science: Humans in Space app will let you explore the station while virtually experiencing what it does to your body.

image

Life in space is no float in the park. Astronauts contend with everything from motion sickness to face swelling to loss of bone density. That’s why many research investigations on the space station study how humans can better adapt to microgravity both in Earth's orbit as well as on longer missions to the Moon and Mars. 

image

Deal with these challenges and perform crucial daily workouts as you explore the orbiting laboratory and ensure the H-II Transfer Vehicle successfully berths to the station. 

image

You can even collect mission patches along the way for completing tasks, counteracting the effects of microgravity and making discoveries. 

image

Download the application for Android here and iPhone here. Find more NASA apps here.

Want to learn about more investigations heading to the space station (or even ones currently under way)? Make sure to follow @ISS_Research on Twitter and Space Station Research and Technology News on Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Why We Study the Sun-Earth Connection – Explained Through Songs

We're launching a new mission to the International Space Station to continue measurements of the Sun's energy reaching Earth.

image

The Total and Spectral solar Irradiance Sensor (TSIS-1) will precisely measure the total amount of sunlight that falls on Earth and how that light is distributed among different wavelengths, including the ultraviolet, visible and infrared. This will give us a better understanding of Earth’s primary energy supply and help improve models simulating Earth’s climate.

1. You are my sunshine, my only sunshine. You make me happy when skies are gray.

image

The Sun is Earth's sunshine and it does more than make us happy; it gives us life. Our Sun's energy drives our planet's ocean currents, seasons, weather and climate. Changes in the Sun also alter our climate in at least two ways.

First, solar radiation has a direct effect where it heats regions of Earth, like our oceans, land, and atmosphere. Second, the solar radiation can cause indirect effects, such as when sunlight interacts with molecules in the upper atmosphere to produce ozone which can affect human health.  

image

Earth’s energy system is in a constant dance to maintain a balance between incoming energy from the Sun and outgoing energy from Earth to space, which scientists call Earth’s energy budget. If you have more energy absorbed by the Earth than leaving it, its temperature increases and vice versa. Because the Sun is Earth's fundamental energy source and only sunshine, we need a quantitative record of the Sun's solar energy output. TSIS-1 will provide the most accurate measurements ever made of sunlight as seen from above Earth’s atmosphere.

2. You're hot then you're cold…You're in then you're out. You're up then you're down.

image

The energy flow between the Earth and Sun's connection is not a constant thing. The Sun can be fickle, sometimes it puts out slightly more energy and some years less. Earth is no better. The Earth absorbs different amounts of the Sun's energy depending on many factors, such as the presence of clouds and tiny particles in the atmosphere called aerosols.  

What we do know is that the Sun's cycle is about 11 years rolling through periods of quiet to times of intense activity. When the Sun is super-intense it releases explosions of light and solar material. This time is a solar maximum.

When the Sun is in a quiet state this period is called the solar minimum.

image

Over the course of one solar cycle (one 11-year period), the Sun’s total emitted energy varies on average at about 0.1 percent. That may not sound like a lot, but the Sun emits a large amount of energy – 1,361 watts per square meter. Even fluctuations at just a tenth of a percent can affect Earth. That's why TSIS-1 is launching: to help scientists understand and anticipate how changes in the Sun will affect us on Earth.

3. You're so vain. You probably think this climate model is about you.

image

Scientists use computer models to interpret changes in the Sun’s energy input. If less solar energy is available, scientists can gauge how that affects Earth’s atmosphere, oceans, weather and seasons by using computer simulations. But the Sun is just one of many factors scientists use to model Earth’s climate. A lot of other factors come into play in addition to the energy from the Sun. Factors like greenhouse gases, clouds scattering light and small particles in the atmosphere called aerosols all can affect Earth’s climate so they all need to be included in climate models. So, while we need to measure the total amount of energy from the Sun, we also need to understand how these other factors alter the amount of energy reaching Earth's surface and affect our climate.

4. Someday we'll find it, the rainbow connection. The lovers, the dreamers and me.

image

We receive the Sun's energy in many different wavelengths, including visible light (rainbows!) as well as light we can't see like infrared and ultraviolet wavelengths. Each color or wavelength of light from the Sun affects Earth’s atmosphere differently.

For instance, ultraviolet light from the Sun can affect Earth's ozone. High in the atmosphere is a layer of protective ozone gas. Ozone is Earth’s natural sunscreen, absorbing the Sun’s most harmful ultraviolet radiation and protecting living things below. But ozone is vulnerable to certain gases made by humans that reach the upper atmosphere. Once there, they react in the presence of sunlight to destroy ozone molecules. Currently, several satellites from us and the National Oceanic and Atmospheric Administration (NOAA) track the ozone in the upper atmosphere and the solar energy that drives the photochemistry that creates and destroys ozone. Our new instrument, TSIS-1, will join that fleet with even better accuracy.

image

TSIS-1 will see different types of ultraviolet (UV) light, including UV-B and UV-C. Each plays a different role in the ozone layer. UV-C rays are essential in creating ozone. UV-B rays and some naturally occurring chemicals regulate the abundance of ozone in the upper atmosphere. The amount of ozone is a balance between these natural production and loss processes.

TSIS-1 data of the Sun's UV energy will help improve computer models of the atmosphere that need accurate measurements of sunlight across the ultraviolet spectrum to model the ozone layer correctly. While UV light represents a tiny fraction of the total sunlight that reaches the top of Earth's atmosphere, it fluctuates from 3 to 10 percent, a change that, in turn causes small changes in the chemical composition and thermal structure of the upper atmosphere.

This is just one of the important applications of TSIS-1 measurements. TSIS-1 will measure how the Sun's energy is distributed over 1,000 different wavelengths.

5. Every move you make…every step you take, I'll be watching you.

image

TSIS-1 will continue our nearly 40 years of closely studying the total amount of energy the Sun sends to Earth from space. We've previously studied this 'total solar irradiance' with nine previous satellites, currently with Solar Radiation and Climate Experiment, (SORCE).

image

NASA’s SORCE collected this data on the total amount of the Sun’s radiant energy throughout Sept. 2017. The satellite actually detected a dip in total irradiance – or the total amount of energy from the Sun- during the month’s intense solar activity.

But there's still very much we don't know about total solar irradiance. We do not know how it varies over longer timescales. Longer term observations are especially important because scientists have observed unusually quiet magnetic activity from the Sun for the past two decades with previous satellites. During the last prolonged solar minimum in 2008-2009, our Sun was the quietest it has ever been since we started observations in 1978. Scientists expect the Sun to enter a solar minimum within the next three years, and TSIS-1 will be primed to take measurements of the next minimum and see if this is part of a larger trend.

For all the latest Earth updates, follow us on Twitter @NASAEarth or Facebook. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
1 year ago
A lithograph of Girl Scout astronauts. Portraits of 33 women of various races and ethnicities curve around part of Earth (bottom left). On Earth are embossed words “doctors, educators, engineers, pilots, scientists.” At top left is the Moon, and at top right is the International Space Station. From left to right, bottom to top, the astronauts are Serena M. Auñón-Chancellor, Kayla Barron, Yvonne D. Cagle, Laurel B. Clark, Eileen M. Collins, Nancy J. Currie-Gregg, N. Jan Davis, Anna L. Fisher, Susan J. Helms, Joan E. Higginbotham, Kathryn P. Hire, Tamara E. Jernigan, Susan L. Kilrain, Christina H. Koch, Wendy B. Lawrence, Sandra H. Magnus, Nicole Aunapu Mann, Megan McArthur, Jessica U. Meir, Pamela A. Melroy, Dorothy M. Metcalf-Lindenburger, Barbara R. Morgan, Lisa M. Nowak, Loral O’Hara, Kathleen Rubins, M. Rhea Seddon, Heidemarie M. Stefanyshyn-Piper, Kathryn D. Sullivan, Kathryn C. Thornton, Janice E. Voss, Jessica Watkins, Mary Ellen Weber, and Sunita L. Williams.

It’s Girl Scout Day! March 12, 2024, is the 112th birthday of Girl Scouts in the United States, and to celebrate, we’re sharing a lithograph of the Girl Scout alumnae who became NASA astronauts.

Girl Scouts learn to work together, build community, embrace adventurousness and curiosity, and develop leadership skills—all of which come in handy as an astronaut. For example, former Scouts Christina Koch and Jessica Meir worked together to make history on Oct. 18, 2019, when they performed the first all-woman spacewalk.

Pam Melroy is one of only two women to command a space shuttle and became NASA’s deputy administrator on June 21, 2021.

Nicole Mann was the first Indigenous woman from NASA to go to space when she launched to the International Space Station on Oct. 5, 2022. Currently, Loral O’Hara is aboard the space station, conducting science experiments and research.

Participating in thoughtful activities in leadership and STEM in Girl Scouts has empowered and inspired generations of girls to explore space, and we can’t wait to meet the future generations who will venture to the Moon and beyond.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
4 years ago

Get to Know the 5 College Teams Sending Their Experiments to Space!

Did you know that YOU (yes you!), can send science experiments to the International Space Station? 

To celebrate 20 years of continuous human presence on the International Space Station, NASA STEM on Station is sending five student experiments to the space station through Student Payload Opportunity with Citizen Science (SPOCS). Selected teams will also engage K-12 students as a part of their experiment through citizen-science.

Get to know the 5 college teams sending their experiments to space!

Arkansas State University 

Team: A-State Science Support System

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Microgravity Environment Impact on Plastic Biodegradation by Galleria mellonella

Experiment Description: Discover the ability of wax worms to degrade plastics in space.

Why did you propose this experiment?

Our team’s passion for sustainability developed into novel ideas for space travel through biodegradation of plastics. 

How will the experiment benefit humankind or future space exploration?

If our experiment is successful, it will “launch” us closer to understanding how to reduce humankind’s plastic footprint on Earth and allow us to safely push farther into unknown planetary habitats.

How have you worked together as a team during the pandemic?

Unknown to each other before the project, our interdisciplinary team formed through virtual communication.

What science fiction character best represents your team and why?

The sandworms of Dune represent our team perfectly considering their importance in space travel, the natural ecological service they provide, and their sheer awesomeness

Columbia University

Team: Columbia Space Initiative

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Characterizing Antibiotic Resistance in Microgravity Environments (CARMEn)

Experiment Description: Discover the impact of mutations on bacteria in microgravity when grown into a biofilm with fungus.

Why did you propose this experiment?

As a highly interdisciplinary team united by our love of outer space, SPOCS was the perfect opportunity to fuse biology, engineering, and education into a meaningful team project.

How will the experiment benefit humankind or future space exploration?

Studying how different microorganisms interact with each other to develop bacterial resistance in space will help improve antibiotic treatments for future Artemis astronauts.

How have you worked together as a team during the pandemic?

Most of our team actually hasn’t ever met in person—we’ve been videoconferencing weekly since May!

What science fiction character best represents your team and why?

Our team is definitely Buzz Lightyear from Toy Story, because we strive to reach infinity (or at least the International Space Station) and beyond!

Stanford University

Team: Stanford Student Space Initiative

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Biopolymer Research for In-Situ Capabilities (BRIC)

Experiment Description: Determine how microgravity impacts the solidification of biobricks.

Why did you propose this experiment?

We have an ongoing project to design and build a machine that turns lunar or Martian soil into bricks, and we want to learn how reduced gravity will impact the process.

How will the experiment benefit humankind or future space exploration?

We are studying an environmentally-friendly concrete alternative that can be used to make structures on Earth and other planets out of on-site, readily available resources.

How have you worked together as a team during the pandemic?

We transitioned our weekly meetings to an online format so that we could continue at our planned pace while maintaining our community.

What science fiction character best represents your team and why?

Like our beloved childhood friend WALL-E, we craftily make inhospitable environments suitable for life with local resources.

University of Idaho

Team: Vandal Voyagers I

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Bacteria Resistant Polymers in Microgravity

Experiment Description: Determine how microgravity impacts the efficacy of bacteria resistant polymers.

Why did you propose this experiment?

The recent emphasis on surface sterility got us thinking about ways to reduce the risk of disease transmission by surfaces on the International Space Station.

How will the experiment benefit humankind or future space exploration?

If successful, the application of proposed polymers can benefit humankind by reducing transmission through high contact surfaces on and off Earth such as hand rails and door handles.

How have you worked together as a team during the pandemic?

We are allowed to work collaboratively in person given we follow the current university COVID guidelines.

What science fiction character best represents your team and why?

Mark Watney from The Martian because he is willing to troubleshoot and problem solve on his own while collaborating with NASA from afar.

University of New Hampshire at Manchester

Team: Team Cooke

Get To Know The 5 College Teams Sending Their Experiments To Space!

Experiment Title: Novel Methods of Antibiotic Discovery in Space (NoMADS)

Experiment Description: Determine how microgravity impacts the amount of bacterium isolates that produce antibiotic metabolites.

Why did you propose this experiment?

To contribute to the limited body of knowledge regarding bacterial resistance and mutations in off-Earth conditions.

How will the experiment benefit humankind or future space exploration?

Understanding how bacteria in the human microbiome and on spacecraft surfaces change can ensure the safe and accurate treatment of bacterial infections in astronauts.

How have you worked together as a team during the pandemic?

Our team continued to evolve our communication methods throughout the pandemic, utilizing frequent remote video conferencing, telecommunications, email, and in-person conferences.

What science fiction character best represents your team and why?

Professor Xavier, the founder of the X-Men, because he also works with mutants and feels that while they are often misunderstood, under the right circumstances they can greatly benefit the world.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • unpredictablestuff
    unpredictablestuff liked this · 1 year ago
  • notthelunaticyourelookingfor
    notthelunaticyourelookingfor reblogged this · 1 year ago
  • lastscreambeing
    lastscreambeing liked this · 3 years ago
  • spacealert
    spacealert liked this · 4 years ago
  • xnib81p
    xnib81p liked this · 4 years ago
  • spitelead42
    spitelead42 liked this · 4 years ago
  • meuponmyponyonmyboat
    meuponmyponyonmyboat liked this · 4 years ago
  • crownedstoat
    crownedstoat liked this · 4 years ago
  • thereyouarewhereveryougo
    thereyouarewhereveryougo reblogged this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags