This 45 day mission – which began May 5, 2018 and ends today, June 18 – will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.
The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 45 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media, kids!
The only people they will talk with regularly are mission control and each other.
The HERA XVII crew is made up of 2 men and 2 women, selected from the Johnson Space Center Test Subject Screening (TSS) pool. The crew member selection process is based on a number of criteria, including criteria similar to what is used for astronaut selection. The four would-be astronauts are:
William Daniels
Chiemi Heil
Eleanor Morgan
Michael Pecaut
What will they be doing?
The crew are going on a simulated journey to an asteroid, a 715-day journey that we compress into 45 days. They will fly their simulated exploration vehicle around the asteroid once they arrive, conducting several site surveys before 2 of the crew members will participate in a series of virtual reality spacewalks.
They will also be participating in a suite of research investigations and will also engage in a wide range of operational and science activities, such as growing and analyzing plants and brine shrimp, maintaining and “operating” an important life support system, exercising on a stationary bicycle or using free weights, and sharpening their skills with a robotic arm simulation.
During the whole mission, they will consume food produced by the Johnson Space Center Food Lab – the same food that the astronauts enjoy on the International Space Station – which means that it needs to be rehydrated or warmed in a warming oven.
This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 5 minutes each way.
A few other details:
The crew follows a timeline that is similar to one used for the space station crew.
They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercise.
Mission: May 5 - June 18, 2018
But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to respond to a decrease in cabin pressure, potentially finding and repairing a leak in their spacecraft.
Throughout the mission, researchers will gather information about living in confinement, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.
Learn more about the HERA mission HERE.
Explore the HERA habitat via 360-degree videos HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What do nutrition and genetics have in common? They could all be linked to vision problems experienced by some astronauts. We see people going up to space with perfect vision, but need glasses when the return home to Earth.
Why Does This Study Matter?
We want to be able to send astronauts to Mars, but losing vision capability along the way is a BIG problem. Discovering the cause and possible treatments or preventions will help us safely send astronauts deeper into space than ever before.
It’s Like Solving a Mystery
We already have an idea of why vision changes occur, but the real mystery remains...why do some astronauts have these issues, and other’s don’t?
Now, let’s break it down:
Nutrition is more than just what you eat. It includes how those things work inside your body. The biochemistry behind how your muscles make energy, how your brain utilizes glucose and how vitamins help with biochemical functions...it’s all part of nutrition.
Genetics also play a part in the vision changes we’re seeing in space. Data shows that there are differences in blood chemistry between astronauts that had vision issues and those that did not. We found that individuals with vision issues had different blood chemistries even before their flight to space. That means that some astronauts could be predisposed to vision issues in space.
Just in January 2016, scientists discovered this possible link between genetics, nutrition and vision changes in astronauts. It makes it clear that the vision problem is WAY more complex than we initially thought.
While we still don’t know exactly what is causing the vision issues, we are able to narrow down who to study, and refine our research. This will help find the cause, and hopefully lead to treatment and prevention of these problems.
Fluid Shifts
The weightless environment of space also causes fluid shifts to occur in the body. This normal shift of fluids to the upper body in space causes increased inter-cranial pressure which could be reducing visual capacity in astronauts. We are currently testing how this can be counteracted by returning fluids to the lower body using a “lower body negative pressure” suit, also known as Chibis.
Benefits on Earth
Research in this area has also suggested that there may be similarities between astronaut data and individuals with a clinical syndrome affecting 10-20% of women, known as polycystic ovary syndrome. Studying this group may provide a way to better understand vision and cardiovascular system effects, which could also advance treatment and prevention for both astronauts and humans on Earth with this disease.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
It's a long ways down. This is a view from the vantage point of astronaut Shane Kimbrough during his spacewalk last Friday outside the International Space Station. Shane posted this photo and wrote, " View of our spectacular planet (and my boots) during the #spacewalk yesterday with @Thom_astro." During the spacewalk with Kimbrough and Thomas Pesquet of ESA, which lasted just over six-and-a-half hours, the two astronauts successfully disconnected cables and electrical connections to prepare for its robotic move Sunday, March 26.
Two astronauts will venture outside the space station again this Thursday, March 30 for the second of three spacewalks. Kimbrough and Flight Engineer Peggy Whitson will begin spacewalk preparation live on NASA Television starting at 6:30 a.m. EST, with activities beginning around 8 a.m. Watch live online here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
How did your perspective on Earth & humanity change from space?
What kind of things are you looking forward to as NASA gets closer to the Artemis and Gateway missions? Do you plan to be a part of them?
You don't necessarily need fancy equipment to watch one of the sky's most awesome shows: a solar eclipse. With just a few simple supplies, you can make a pinhole camera that allows you to view the event safely and easily. Before you get started, remember: You should never look at the Sun directly without equipment that's specifically designed for solar viewing. Do not use standard binoculars or telescopes to watch the eclipse, as the light could severely damage your eyes. Sunglasses also do NOT count as protection when attempting to look directly at the Sun. Stay safe and still enjoy the Sun's stellar show by creating your very own pinhole camera. It's easy!
See another pinhole camera tutorial at https://www.jpl.nasa.gov/edu/learn/project/how-to-make-a-pinhole-camera/
Watch this and other eclipse videos on our YouTube channel: https://youtu.be/vWMf5rYDgpc?list=PL_8hVmWnP_O2oVpjXjd_5De4EalioxAUi
A pinhole camera is just one of many viewing options. Learn more at https://eclipse2017.nasa.gov/safety
Music credit: Apple of My Eye by Frederik Wiedmann
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What's a day working at NASA like??
1. Our upcoming James Webb Space Telescope will act like a powerful time machine – because it will capture light that’s been traveling across space for as long as 13.5 billion years, when the first stars and galaxies were formed out of the darkness of the early universe.
2. Webb will be able to see infrared light. This is light that is just outside the visible spectrum, and just outside of what we can see with our human eyes.
3. Webb’s unprecedented sensitivity to infrared light will help astronomers to compare the faintest, earliest galaxies to today's grand spirals and ellipticals, helping us to understand how galaxies assemble over billions of years.
Hubble’s infrared look at the Horsehead Nebula. Credit: NASA/ESA/Hubble Heritage Team
4. Webb will be able to see right through and into massive clouds of dust that are opaque to visible-light observatories like the Hubble Space Telescope. Inside those clouds are where stars and planetary systems are born.
5. In addition to seeing things inside our own solar system, Webb will tell us more about the atmospheres of planets orbiting other stars, and perhaps even find the building blocks of life elsewhere in the universe.
Credit: Northrop Grumman
6. Webb will orbit the Sun a million miles away from Earth, at the place called the second Lagrange point. (L2 is four times further away than the moon!)
7. To preserve Webb’s heat sensitive vision, it has a ‘sunshield’ that’s the size of a tennis court; it gives the telescope the equivalent of SPF protection of 1 million! The sunshield also reduces the temperature between the hot and cold side of the spacecraft by almost 600 degrees Fahrenheit.
8. Webb’s 18-segment primary mirror is over 6 times bigger in area than Hubble's and will be ~100x more powerful. (How big is it? 6.5 meters in diameter.)
9. Webb’s 18 primary mirror segments can each be individually adjusted to work as one massive mirror. They’re covered with a golf ball's worth of gold, which optimizes them for reflecting infrared light (the coating is so thin that a human hair is 1,000 times thicker!).
10. Webb will be so sensitive, it could detect the heat signature of a bumblebee at the distance of the moon, and can see details the size of a US penny at the distance of about 40 km.
BONUS! Over 1,200 scientists, engineers and technicians from 14 countries (and more than 27 U.S. states) have taken part in designing and building Webb. The entire project is a joint mission between NASA and the European and Canadian Space Agencies. The telescope part of the observatory was assembled in the world’s largest cleanroom at our Goddard Space Flight Center in Maryland.
Webb is currently at Northrop Grumman where the telescope will be mated with the spacecraft and undergo final testing. Once complete, Webb will be packed up and be transported via boat to its launch site in French Guiana, where a European Space Agency Ariane 5 rocket will take it into space.
Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This is what it would look like if you were training to #BeAnAstronaut! Astronaut candidates must train for two years before they become official NASA astronauts. After graduation, you can look forward to more skill building when training for upcoming missions. Let’s dive into some of the courses you can expect once you’re selected for the job:
All astronaut candidates must learn to safely operate in a T-38 jet, either as a pilot or crew. Because this is the one area of their training that is not a simulation and involves decisions with life or death consequences, it teaches them to think quickly and clearly in dynamic situations.
Geology training courses are specially tailored to the work astronauts will do from the International Space Station or on the next interplanetary mission! Astronauts learn the basic principles of geology, see rocks in their natural environment and handle samples from their class discussions. It’s less like memorizing the names of rocks and more like learning how geologists think and work.
Before they end up in space, astronauts carry out a significant portion of their training in aircraft on Earth. It's unlikely, but possible, that one of those training planes could crash in a remote area and leave the humans on board to fend for themselves for a while. Knowing how to take care of their basic needs would be invaluable. Through the exercises, instructors hope to instill self-care and self-management skills, to develop teamwork skills, and to strengthen leadership abilities – all of which are valuable for working in the isolation of the wild or the isolation of space.
Astronauts participate in a variety of extreme environment training to prepare for the stresses of spaceflight. Pictured here, they are exploring the underground system of the Sa Grutta caves in Sardinia, Italy as a part of the European Astronaut Centre’s Cooperative Adventure for Valuing and Exercising human behavior and performance Skills (CAVES) expedition. Seasoned astronauts as well as rookies participate in the course and share experiences while learning how to improve leadership, teamwork, decision-making and problem-solving skills.
In our Virtual Reality Laboratory training facility at Johnson Space Center astronauts are able to immerse themselves in virtual reality to complete mission tasks and robotic operations before launching to space. The facility provides real time graphics and motion simulators integrated with a tendon-driven robotic device to provide the kinesthetic sensation of the mass and inertia characteristics of any large object (<500lb) being handled.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
New science is headed to the International Space Station aboard the SpaceX Dragon.
Investigations on this flight include a test of robotic technology for refueling spacecraft, a project to map the world’s forests and two student studies inspired by Marvel’s “Guardians of the Galaxy” series.
Learn more about the science heading into low-Earth orbit:
The Global Ecosystem Dynamics Investigation (GEDI) is an instrument to measure and map Earth’s tropical and temperate forests in 3D.
The Jedi knights may help protect a galaxy far, far away, but our GEDI will help us study and understand forest changes right here on Earth.
What’s cooler than cool? Cryogenic propellants, or ice-cold spacecraft fuel! Our Robotic Refueling Mission 3 (RRM3) will demonstrate technologies for storing and transferring these special liquids. By establishing ways to replenish this fuel supply in space, RRM3 could help spacecraft live longer and journey farther.
The mission’s techniques could even be applied to potential lunar gas stations at the Moon, or refueling rockets departing from Mars.
The Molecular Muscle investigation examines the molecular causes of muscle abnormalities from spaceflight in C. elgans, a roundworm and model organism.
This study could give researchers a better understanding of why muscles deteriorate in microgravity so they can improve methods to help crew members maintain their strength in space.
Perfect Crystals is a study to learn more about an antioxidant protein called manganese superoxide dismutase that protects the body from the effects of radiation and some harmful chemicals.
The station’s microgravity environment allows researchers to grow more perfectly ordered crystals of the proteins. These crystals are brought back to Earth and studied in detail to learn more about how the manganese superoxide dismutase works. Understanding how this protein functions may aid researchers in developing techniques to reduce the threat of radiation exposure to astronauts as well as prevent and treat some kinds of cancers on Earth.
SlingShot is a new, cost-effective commercial satellite deployment system that will be tested for the first time.
SlingShot hardware, two small CubeSats, and a hosted payload will be carried to the station inside SpaceX’s Dragon capsule and installed on a Cygnus spacecraft already docked to the orbiting laboratory. Later, Cygnus will depart station and fly to a pre-determined altitude to release the satellites and interact with the hosted payload.
Spaceflight appears to accelerate aging in both humans and mice. Rodent Research-8 (RR-8) is a study to understand the physiology of aging and the role it plays on the progression of disease in humans. This investigation could provide a better understanding of how aging changes the body, which may lead to new therapies for related conditions experienced by astronauts in space and people on Earth.
The MARVEL ‘Guardians of the Galaxy’ Space Station Challenge is a joint project between the U.S. National Laboratory and Marvel Entertainment featuring two winning experiments from a contest for American teenage students. For the contest, students were asked to submit microgravity experiment concepts that related to the Rocket and Groot characters from Marvel’s “Guardians of the Galaxy” comic book series.
Team Rocket: Staying Healthy in Space
If an astronaut suffers a broken tooth or lost filling in space, they need a reliable and easy way to fix it. This experiment investigates how well a dental glue activated by ultraviolet light would work in microgravity. Researchers will evaluate the use of the glue by treating simulated broken teeth and testing them aboard the station.
Team Groot: Aeroponic Farming in Microgravity
This experiment explores an alternative method for watering plants in the absence of gravity using a misting device to deliver water to the plant roots and an air pump to blow excess water away. Results from this experiment may enable humans to grow fruits and vegetables in microgravity, and eliminate a major obstacle for long-term spaceflight.
These investigation join hundreds of others currently happening aboard the station. For more info, follow @ISS_Research!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
While even the most “normal” black hole seems exotic compared to the tranquil objects in our solar system, there are some record-breaking oddballs. Tag along as we look at the biggest, closest, farthest, and even “spinniest” black holes discovered in the universe … that we know of right now!
Located 700 million light-years away in the galaxy Holmberg 15A, astronomers found a black hole that is a whopping 40 billion times the mass of the Sun — setting the record for the biggest black hole found so far. On the other hand, the smallest known black hole isn’t quite so easy to pinpoint. There are several black holes with masses around five times that of our Sun. There’s even one candidate with just two and a half times the Sun’s mass, but scientists aren’t sure whether it’s the smallest known black hole or actually the heaviest known neutron star!
You may need to take a seat for this one. The black hole GRS 1915+105 will make you dizzier than an afternoon at an amusement park, as it spins over 1,000 times per second! Maybe even more bizarre than how fast this black hole is spinning is what it means for a black hole to spin at all! What we're actually measuring is how strongly the black hole drags the space-time right outside its event horizon — the point where nothing can escape. Yikes!
If you’re from Earth, the closest black hole that we know of right now, Mon X-1 in the constellation Monoceros, is about 3,000 light-years away. But never fear — that’s still really far away! The farthest known black hole is J0313-1806. The light from its surroundings took a whopping 13 billion years to get to us! And with the universe constantly expanding, that distance continues to grow.
So, we know about large (supermassive, hundreds of thousands to billions of times the Sun's mass) and small (stellar-mass, five to dozens of times the Sun's mass) black holes, but what about other sizes? Though rare, astronomers have found a couple that seem to fit in between and call them intermediate-mass black holes. As for tiny ones, primordial black holes, there is a possibility that they were around when the universe got its start — but there’s not enough evidence so far to prove that they exist!
One thing that’s on astronomers’ wishlist is to see two supermassive black holes crashing into one another. Unfortunately, that event hasn’t been detected — yet! It could be only a matter of time before one reveals itself.
Though these are the records now, in early 2021 … records are meant to be broken, so who knows what we’ll find next!
Add some of these records and rare finds to your black hole-watch list, grab your handy-dandy black hole field guide to learn even more about them — and get to searching!
Keep up with NASA Universe on Facebook and Twitter where we post regularly about black holes.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts