Exploring An Asteroid Without Leaving Earth

Exploring an Asteroid Without Leaving Earth

This 45 day mission – which begins Feb. 1, 2018 – will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.

image

The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 45 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media, kids!

The only people they will talk with regularly are mission control and each other.

image

The HERA XVI crew is made up of 2 men and 2 women, selected from the Johnson Space Center Test Subject Screening (TSS) pool. The crew member selection process is based on a number of criteria, including criteria similar to what is used for astronaut selection. The four would-be astronauts are:

Kent Kalogera

Jennifer Yen

Erin Hayward

Gregory Sachs

What will they be doing?

The crew are going on a simulated journey to an asteroid, a 715-day journey that we compress into 45 days. They will fly their simulated exploration vehicle around the asteroid once they arrive, conducting several site surveys before 2 of the crew members will participate in a series of virtual reality spacewalks.

image

They will also be participating in a suite of research investigations and will also engage in a wide range of operational and science activities, such as growing and analyzing plants and brine shrimp, maintaining and “operating” an important life support system, exercising on a stationary bicycle or using free weights, and sharpening their skills with a robotic arm simulation. 

image

During the whole mission, they will consume food produced by the Johnson Space Center Food Lab – the same food that the astronauts enjoy on the International Space Station – which means that it needs to be rehydrated or warmed in a warming oven.

This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 5 minutes each way.

A few other details:

The crew follows a timeline that is similar to one used for the space station crew.

They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercise.

Mission: February 1, 2018 - March 19, 2018

image

But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to respond to a decrease in cabin pressure, potentially finding and repairing a leak in their spacecraft.

Throughout the mission, researchers will gather information about living in confinement, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.

Learn more about the HERA mission HERE. 

Explore the HERA habitat via 360-degree videos HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

8 years ago

Sample Return Robot Challenge

It’s been a long, technical journey for the seven teams competing this week in Level 2 of our Sample Return Robot Challenge. Over the past five years, more than 50 teams have attempted the $1.5 million competition, which is looking to develop autonomous capabilities in robotics. Basically, we want robots that can think and act on their own, so they can travel to far off places – like Mars – and we can rely on them to work on their own when a time delay or unknown conditions could be factors.

This challenge has two levels, both requiring robots to navigate without human control and Earth-based tools (like GPS or magnetic compassing). The robot has to find samples, pick them up and deliver them to home base. Each of the final seven teams succeeded at Level 1, where they had to find one sample, during previous competition years. Now, they have a shot at the much more difficult Level 2, where they have a two-hour window to locate up to 10 samples of varying point values, but they don’t know where to look or what exactly they’re looking for.

Get to know the final seven, and be sure to cheer them on as we live-stream the competition all day Sept. 4 and 5.

image

West Virginia University Mountaineers Hailing from: Morgantown, West Virginia # of Team Members:  12

Behind the Name: In West Virginia, we call ourselves mountaineers. We like to explore unknown places and be inspired by nature.

Motivation: To challenge ourselves. Through this venture, we are also hoping to create research and career opportunities for everyone on the team.

Strategy: Keeping things simple. Through participating in SRR challenge during the last three years, we have gone a long way in streamlining our system.

Obstacles: One of the biggest challenges was finding and nurturing the talent of individual team members and coordinating the team in making real progress on time.

Prize Plans: We donated 50 percent of our 2015 Level 2 prize money to create an undergraduate “Robotics Achievement Fellowship” at WVU. The rest of the funding was allocated to support team member professional development, such as traveling to conferences. A similar model will be used if we win in 2016.

Extra Credit:  We did an Easter egg hunt with our robot, Cataglyphis (named after a desert ant with extraordinary navigation capabilities), last year.

image

Survey Hailing from: Los Angeles, California # of Team Members: Jascha Little

Behind the Name: It's short, simple, and what the robot spends a lot of its time doing.

Team History: We work together, and we all thought the challenge sounded like an excellent way to solve the problem of what to do with all our free time.

Motivation: We are all engineers and software developers that already work on robotics projects. Reading too much sci-fi when we were kids probably got us to this point.

Strategy: We are trying to solve the search-and-return problem primarily with computer vision. This is mostly to reduce cost. Our budget can't handle high quality IMUs or LIDAR.

Prize Plans: Probably build more robots.

Extra Credit: Favorite pop culture robot is Bender (Futurama). Alcoholic robots are the best.

image

Alabama Astrobotics (The University of Alabama) Hailing from: Tuscaloosa, Alabama # of Team Members: 33

Behind the Name: “Alabama Astrobotics” was chosen to reflect our school affiliation and our mission to design robotics for various space applications.

Team History: Alabama Astrobotics has been involved with other NASA robotics competitions in the past.  So, the team is accustomed to the competition environment.  

Motivation: We are pleased to have advanced to Level 2 in our first year in the competition (the first team to do so), but we are also not satisfied with just advancing.  Our goal is to try to solve Level 2.

Strategy: Our strategy is similar to that used in Level 1.  Our Level 1 approach was chosen so that it would translate to Level 2 as well, thus requiring fewer customizations from Level 1 to Level 2.

Obstacles: As a university team, the biggest challenge was not having all our team members available to work on the robot during the time since Level 1 completed in June. Most of my team members have either graduated or have summer internships, which took them away from campus after Level 1.  Thus, we didn’t have the manpower to address the additional Level 2 technical challenges.

Prize Plans: Any prize money would be donated to the University of Alabama College of Engineering.

Extra Credit: Alabama Astrobotics also competes in the annual NASA Robotic Mining Competition held at the Kennedy Space Center each May.  We have been fortunate enough to win that competition three times in its seven year history, and we are the only team to win it more than once.

image

MAXed-Out Hailing From: Santa Clara, California # of Team Members: 4

Behind the Name: Several reasons: Team leader is Greg Maxwell, and his school nick name was Max. Our robot’s name is Max, which is one of the most common name for a dog, and it is a retriever. Our efforts on this has been too the max…. i.e. MAXed-Out. Our technology requirements have been pushed to their limits - Maxed-Out.

Team History: Greg Maxwell started a Meet-up “Silicon-Valley Robot Operating System” SV-ROS that was to help teach hobbyists how to use ROS on their robots. We needed a project to help implement and make real what we were teaching. This is the third contest we have participated in.

Motivation: There is still such a long way to go to make robots practical. Every little bit we can contribute makes them a little bit better and smarter. Strategy: Level 1 was a test, as a minimum viable product to prove the tech worked. For Level 2, we had to test and add obstacle avoidance to be able to cover the larger area with trees and slopes, plus add internal guidance to allow for Max to be out of the home base camera tracking system.

Obstacles: Lack of a cost effective robot platform that met all the requirements; we had to build our own. Also time and money. The two months (between Level 1 and 2) went really fast, and we had to abandon lots of cool ideas and focus on the basics.

Prize Plans: Not sure, but pay off the credit cards comes to mind. We might open-source the platform since it works pretty well. Or we will see if it works as expected. We may also take a break / vacation away from robots for a while.

Extra Credit: My nephew, Max Hieges, did our logo, based on the 1960-era Rat Fink sticker.

image

Mind & Iron Hailing From: Seattle, Washington # of Team Members: 5

Behind the Name: It was the original title for Isaac Asimov’s “I Robot,” and we thought it was a good combination of what a robot actually is – mechanical and brains.

Team History: Three of us were WPI undergrads and met at school; two of us did our master’s degrees at the University of Washington, where we met another member, and then another of us brought on a family member.

Motivation: We saw that there was an opportunity to compete in a challenge that seemed like there was a reasonable solution that we could tackle with a limited budget. We saw three years of competition and thought that we had some better ideas and a pretty good shot at it. Strategy: The samples and the terrain are much more complex in Level 2, and we have to be more careful about our navigation. We are using the same tools, just expanding their capability and scope.

Obstacles: The team being spread over three different time zones has been the biggest challenge. We are all doing this in our free time after work. The internet has been really handy to get things done.

Prize Plans: Probably invest in more robot stuff! And look for other cool projects we can work on, whether it’s another NASA challenge or other projects.

Extra Credit: We are hoping to collaborate with NASA on the professional side with surgical robots to exoskeletons. Challenge-related, our robot is mostly made of plywood – it is a composite fiber material that works well for fast development using cheap materials.

image

Sirius Hailing From: South Hadley, Massachusetts # of Team Members: 4

Team History: We are a family. Our kids are both robot builders who work for Boston Dynamics, and they have a lot of robot expertise. Both of our kids are robotics engineers, and my wife is intrinsically brilliant, so the combination of that makes for a good team.

Motivation: Because it’s a really hard challenge. It’s one thing to drive a robot with a remote control; it’s another to do the whole thing autonomously. If you make a single change in a robot, it could throw everything off. You have to think through every step for the robot. On a basic level, to learn more about robotics and to win the prize. Strategy: Very similar to Level 1. We approached Level 1 knowing Level 2 was there, so our strategy was no different.

Obstacles: It is very difficult to do object recognition under unpredictable conditions – sun, clouds, weather, sample location. The biggest challenge was trying to recognize known and unknown objects under such a wide variety of environmental possibilities. And the terrain is very different – you don’t know what you’re going to find out there.

Prize Plans: We haven’t really thought about it, but we will give some away, and we’ll invest the rest in our robotics company.

Extra Credit: The first robot we had was called Robo-Dad. Dan was training to be an astronaut in the 1990s, so we built a toy remote-controlled truck that Dan - in Texas - could control via the internet in the house. Robo-Dad had a camera that Dan could see the house with. It had two-way communication; it was a little before it’s time – the internet was very slow.

image

Team AL Hailing From: Ontario, Canada # of Team Members: 1

Team History: I was looking for competitions that were open, and my dad had followed the Centennial Challenges for a while, so he alerted me to this one. I was already doing rover projects, and it was appropriate and awesome and interesting. I felt like I could do it as a team of one.

Motivation: Difficult challenges. I’m definitely inspired seeing really cool robots that other people are building. New emerging tech really motives me to create new things.

Strategy: I showed up with another robot to Level 2. I built three, but ran with only two. It did make it more complicated, but the strategy was to send them to different areas and have them be able to communicate with each other. Everything physically was the same from Level 1.  The idea is that they would all go out with different missions and I would maximize field coverage.

Obstacles: Time. More time would always be nice. Being able to make something like this happen under a timeline is really difficult. I feel like I accomplished a lot for a year. Also, manpower – being a team of 1, I have to do all of the paperwork and other related stuff, but also carry the hardware and do the programming. You have to multitask a lot.

Prize Plans: I’d like to start a robotics company, and be able to expand some of the things I’ve been working on associated with technology and maker education.

Extra Credit: My story is not linear. A lot of people are surprised to hear that my background is in molecular biology and  research. I once lived in a tent in Madagascar for a few months to do a biodiversity study, and I have multiple publications from that side of my life. I am in a whole different place now.

The competition is one of many run by our Centennial Challenges program, which looks to the public – citizen inventors, academics, makers, artists, YOU – to help us advance technology and bring a different perspective to obstacles that gets us outside of our traditional solving community. See what else we’re working on here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
1 year ago
Space provides a dark backdrop for this image, with small twinkling stars dotting the background. At the center of the image is the artist’s illustration of the Psyche asteroid with deep craters and metal all around. The Psyche spacecraft is in the front, with the main body in the middle of large solar arrays on each side. Credit: NASA/JPL-Caltech/ASU

Let's Explore a Metal-Rich Asteroid 🤘

Between Mars and Jupiter, there lies a unique, metal-rich asteroid named Psyche. Psyche’s special because it looks like it is part or all of the metallic interior of a planetesimal—an early planetary building block of our solar system. For the first time, we have the chance to visit a planetary core and possibly learn more about the turbulent history that created terrestrial planets.

Here are six things to know about the mission that’s a journey into the past: Psyche.

Artist’s concept of the Psyche spacecraft orbiting the metal asteroid Psyche. At the center of the image is the spacecraft with large solar arrays on each side of the main body. At the bottom-right is the metal asteroid with peaks sticking out of the surface. Credit: NASA/JPL-Caltech/Arizona State Univ./Space Systems Loral/Peter Rubin

1. Psyche could help us learn more about the origins of our solar system.

After studying data from Earth-based radar and optical telescopes, scientists believe that Psyche collided with other large bodies in space and lost its outer rocky shell. This leads scientists to think that Psyche could have a metal-rich interior, which is a building block of a rocky planet. Since we can’t pierce the core of rocky planets like Mercury, Venus, Mars, and our home planet, Earth, Psyche offers us a window into how other planets are formed.

ALT text: Artist’s concept of the asteroid Psyche. The darkness of space takes up the entire background with small twinkly stars. Two large craters are at the center of the asteroid. The asteroid is mostly silvery with a few spots of copper on the surface. The word "Illustration" is printed at the bottom to the right of the asteroid. Credit: NASA/JPL-Caltech/ASU/Peter Rubin

2. Psyche might be different than other objects in the solar system.

Rocks on Mars, Mercury, Venus, and Earth contain iron oxides. From afar, Psyche doesn’t seem to feature these chemical compounds, so it might have a different history of formation than other planets.

If the Psyche asteroid is leftover material from a planetary formation, scientists are excited to learn about the similarities and differences from other rocky planets. The asteroid might instead prove to be a never-before-seen solar system object. Either way, we’re prepared for the possibility of the unexpected!

Two engineers, John Goldsten (left) and Sam Fix (right), work on the Gamma Ray/Neutron Spectrometer instrument at the Johns Hopkins Applied Physics Laboratory. Credit: Johns Hopkins APL/Craig Weiman

3. Three science instruments and a gravity science investigation will be aboard the spacecraft.

The three instruments aboard will be a magnetometer, a gamma-ray and neutron spectrometer, and a multispectral imager. Here’s what each of them will do:

Magnetometer: Detect evidence of a magnetic field, which will tell us whether the asteroid formed from a planetary body

Gamma-ray and neutron spectrometer: Help us figure out what chemical elements Psyche is made of, and how it was formed

Multispectral imager: Gather and share information about the topography and mineral composition of Psyche

The gravity science investigation will allow scientists to determine the asteroid’s rotation, mass, and gravity field and to gain insight into the interior by analyzing the radio waves it communicates with. Then, scientists can measure how Psyche affects the spacecraft’s orbit.

A Hall-effect thruster emits a blue glow trailing behind the spacecraft. Credit: NASA/JPL-Caltech

4. The Psyche spacecraft will use a super-efficient propulsion system.

Psyche’s solar electric propulsion system harnesses energy from large solar arrays that convert sunlight into electricity, creating thrust. For the first time ever, we will be using Hall-effect thrusters in deep space.

Pictured in front of the spacecraft is Lindy Elkins-Tanton, being interviewed by a member of the media at NASA’s Jet Propulsion Laboratory. Credit: NASA/JPL-Caltech

5. This mission runs on collaboration.

To make this mission happen, we work together with universities, and industry and NASA to draw in resources and expertise.

NASA’s Jet Propulsion Laboratory manages the mission and is responsible for system engineering, integration, and mission operations, while NASA’s Kennedy Space Center’s Launch Services Program manages launch operations and procured the SpaceX Falcon Heavy rocket.

Working with Arizona State University (ASU) offers opportunities for students to train as future instrument or mission leads. Mission leader and Principal Investigator Lindy Elkins-Tanton is also based at ASU.

Finally, Maxar Technologies is a key commercial participant and delivered the main body of the spacecraft, as well as most of its engineering hardware systems.

Members of the Psyche team pose for a photo at NASA’s Jet Propulsion Laboratory. Credit: NASA/JPL-Caltech

6. You can be a part of the journey.

Everyone can find activities to get involved on the mission’s webpage. There's an annual internship to interpret the mission, capstone courses for undergraduate projects, and age-appropriate lessons, craft projects, and videos.

You can join us for a virtual launch experience, and, of course, you can watch the launch with us on Oct. 12, 2023, at 10:16 a.m. EDT!

For official news on the mission, follow us on social media and check out NASA’s and ASU’s Psyche websites.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago

Hello! I am an avid lover of the cosmos and all things too grand for our minds to grasp. I was wondering, honestly, how do you cope with the pressure of your jobs, or say the scale of what is on your shoulders? It's quite an impressive thing you do, and it just gets me curious as to how you deal with the expectations that come with this type of job? Like, when you go home at night and eat your dinner, go to bed, do you have to practice mindfulness? Thanks for answering these! Love you guys!!!


Tags
1 year ago

Behold—the space station of the future! (…from 1973)

An artist's concept illustrating a cutaway view of the Skylab 1 Orbital Workshop (OWS). The OWS is a circular space with several vertical layers with floors that look like golden honeycombs. Different parts of the workshop are labeled, like the control and display panel where an astronaut in an orange jumpsuit works, film vaults, experiment support system, and the shower. Credit: NASA

This artist’s concept gives a cutaway view of the Skylab orbital workshop, which launched 50 years ago on May 14, 1973. Established in 1970, the Skylab Program's goals were to enrich our scientific knowledge of Earth, the sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms; to study the effects of the processing and manufacturing of materials in the absence of gravity; and to conduct Earth-resource observations.

Three crews visited Skylab and carried out 270 scientific and technical investigations in the fields of physics, astronomy, and biological sciences. They also proved that humans could live and work in outer space for extended periods of time, laying the groundwork for the International Space Station.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

What do *you* think is inside a black hole? Or If they sun was a black hole what would we see in the sky? Thanks!


Tags
8 years ago

10 Questions for Our New Head of Science

Guess what?! We have a new lead for our science missions, and we’re excited to introduce him to you. Recently, NASA Administrator Charles Bolden has named Thomas Zurbuchen as the new head of our organization for science missions. Let’s get to know him...

Zurbuchen was most recently a professor of space science and aerospace engineering at the University of Michigan in Ann Arbor. He was also the university’s founding director of the Center for Entrepreneurship in the College of Engineering.

image

Zurbuchen’s experience includes research in solar and heliospheric physics, experimental space research, space systems and innovation and entrepreneurship.

We asked him a few questions to see what he has in store for science at NASA…let’s take a look:

1. What is your vision for science at NASA?

Right now, I am focusing on my team and I am learning how I can help them achieve the goals we have; to design and build the missions we are currently working on. Once the presidential transition is complete, we will engage in strategic activity with that team. It has been my experience that the best ideas always come from great and diverse teams working together. I intend to do that here as well.

2. What solar system destination are you most eager for NASA to explore?

Tough question to answer. Basically, I want to go where there are answers to the most important questions. One question on my mind is the origin of extraterrestrial life. Some parts of the answer to this question can be answered at Mars, some at Europa or other moons in the outer solar system like Enceladus. Other parts of the answer is around other stars, where we have found thousands of planets…some of which are amazingly similar to Earth!

image

3. With raw images posted to several websites from our missions, what’s one thing you hope members of the public can help NASA do with that powerful data?

I hope that people all over the world play with the data and find new ways to explore. It’s almost like hanging out in the most amazing libraries talking about nature. Many of the books in this library have never been opened and curious minds can find true treasures in there. I know that there are over a billion data-products NASA is making available about the Earth – it’s a treasure chest!

4. In your opinion, what big science breakthrough from the past informs missions of today?

In science, everything we do builds on successes and also failures of the past. Sometimes we forget our failures or near-failures, which tend to teach us a lot about what to do and what not to do. One of my favorite stories is about the Explorer 1 mission: first they observed almost nothing, until they realized that there was so much radiation that the detectors were chocking. The Van Allen Probes is a mission that are conducting the best exploration today of these radiation belts, discovered by Explorer 1. Our exploration history is full of stories like that.

image

5. Behind every pretty space image is a team of scientists who analyze all the data to make the discovery happen. What do you wish the public knew about the people and work that goes into each of those pretty pictures?

I wish people knew that every picture they see, every data-set they use, is a product of a team. One of the most exhilarating facts of working in space is to be able to work in teams composed of some of the nicest and most interesting people I have ever met. There are some super-famous people I run with every time we are in the same town, others who like to play music and listen to it, and some who have been in space or climbed mountains.

6. If you were a member of the public, what mission events in the next year would you be most excited about?

The public’s lives will be directly affected by our missions in our Earth Science portfolio. Some of them are done together with NOAA, our sister agency responsible for forecasts. For example, GOES will feature a lightning detector that will enable better predictions of storms. We are also launching CYGNSS in December. This NASA mission, composed of 8 spacecraft will provide unique and high-resolution data designed to provide a deeper understanding and better prediction for hurricanes globally.

image

7. NASA science rewrites textbooks all the time. What do you hope the kids of tomorrow will know as facts that are merely hypothesis today?

I hope they will know about life elsewhere. They will learn how life evolves, and where there is life today.

8. NASA has explored planets within our solar system. With the launch of the James Webb Space Telescope in 2020, what do you hope we learn about distant worlds?

James Webb is going to allow us to go back in time and look at the first stars and first galaxies. This is something we have never seen – we can only guess what will happen. James Webb is going to allow us to look at many, many more planets around other stars and will allow us to start doing the kind of research that links to the question about how habitable life is there.

image

9. What sort of elements make for an exciting new science discovery? What do you hope is the next big discovery?

Almost always, an exciting discovery is a surprise. Sometimes, discoveries happen because we are looking for something totally different. The biggest discoveries are the ones that change everything we thought before. All of a sudden, nature wags the finger at us and says “you are wrong!” That is how you know you are up to something new.

I hope the next big discovery tells us about the origin of the 95% of the universe we don’t know enough about. We call these 95% “Dark Energy” and “Dark Matter”, but – to be honest – we really don’t know. So, we are today living in a time where we know with 100% certainty that we don’t know what makes up 95% of our universe.

10. In your opinion, why should people care about the science at NASA?

They should care because we improve and protect lives on Earth. They should also care because we make the world we live in bigger. This is because we find things out we never knew, which creates new opportunities for humankind. Some of these opportunities are near-term – they are patents, innovations, companies or great educations. But, some of them are long-term – they change how we think about life itself.

Stay updated on science at NASA and Dr. Thomas Zurbuchen by following him on Twitter: @Dr_ThomasZ

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Things to Know This Week

Learn more about our Deep Space Network, where to watch the Ursid meteor shower, Cassini’s ring-grazing at Saturn and more.

image

1. A Deep Space Anniversary

On Dec. 24, 1963, the Jet Propulsion Laboratory's Deep Space Information Facility was renamed the Deep Space Network. And, it’s been humanity's ear to the skies ever since.

+ History of the Deep Space Network 

image

2. Ursid Meteor Shower 

The best time to view the Ursids, radiating from Ursa Minor, or the little Dipper, will be from midnight on December 21 until about 1a.m. on December 22, before the moon rises.

image

3. At Saturn, the Ring-Grazing Continues

Our Cassini spacecraft has completed several orbits that take it just outside Saturn’s famous rings. The first ring-grazing orbit began on November 30. The spacecraft will repeat this feat 20 times, with only about a week between each ring-plane crossing.

+ Learn more

Solar System: Things To Know This Week

4. Preparing for the 2017 Total Solar Eclipse

Next year North America will see one of the most rare and spectacular of all sky events. Learn how to prepare.

+ 2017 Solar Eclipse Toolkit

image

5. Searching for Rare Asteroids

Our first mission to return an asteroid sample to Earth will be multitasking during its two-year outbound cruise to the asteroid Bennu. On February 9-20, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) will activate its onboard camera suite and begin its search for elusive “Trojan,” asteroids, constant companions to planets in our solar system as they orbit the sun, remaining near a stable point 60 degrees in front of or behind the planet. Because they constantly lead or follow in the same orbit, they will never collide with their companion planet.

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
1 year ago

Our Answer Time with flight directors Diane Dailey and Chloe Mehring is now scheduled for Dec. 7 at 12 p.m. EST (9 a.m. PST). Join us then to see your questions answered!

At top is Chloe Mehring, a woman with shoulder-length brown hair, poses for a picture in the Mission Control Center at NASA’s Johnson Space Center in Houston. She wears a black blazer, and her arms are crossed as she smiles. The words "Chloe Mehring" are underneath her arms. Behind her are several desks lining an aisle. On the desks are many computer screens. Large screens line the walls with the logos of NASA and other space agencies, times, maps, and more information.

Diane Dailey (bottom), a woman with brown hair, poses for a picture in the Mission Control Center at NASA’s Johnson Space Center in Houston. She wears a black blazer, and her arms are crossed as she smiles. Her name, "Diane Dailey" is written below her. Dailey stands at a desk with three monitors on it, as well as a telephone and several cords. Her nameplate, reading “Flight Director” is visible at the center of the photo. Behind her are several large screens lining the walls. Various information is displayed on those screens, but a map of the world and the Horizon Flight logo are most prominent. There are also people working at other desks in the room. 

In the center of the image is an orange many-pointed star shape. The text in the sticker says "Tumblr answer time." Credit: NASA, Tumblr

What’s It Like to Work in NASA’s Mission Control Center?

In the latest installment of our First Woman graphic novel series, we see Commander Callie Rodriguez embark on the next phase of her trailblazing journey, as she leaves the Moon to take the helm at Mission Control.

Two panels from the second issue of First Woman, NASA’s graphic novel series following fictional astronaut Callie Rodriguez. In the first panel, Callie, dressed in a suit, speaks to an astronaut while working at Mission Control. She says, “Commander! We’re getting updated readings from the surface. The weather’s changing rapidly. There’s a new dust storm at the landing site. You may have to assume manual control as you approach the surface. The decision will be yours.” The speech bubble overlaps into the second panel, which shows the many desks and computer monitors in Mission Control. On the screen, we can see the astronaut Callie is speaking to. Credit: NASA

Flight directors work in Mission Control to oversee operations of the International Space Station and Artemis missions to the Moon. They have a unique, overarching perspective focused on integration between all the systems that make a mission a success – flight directors have to learn a little about a lot.

Diane Dailey and Chloe Mehring were selected as flight directors in 2021. They’ll be taking your questions about what it’s like to lead teams of flight controllers, engineers, and countless professionals, both agencywide and internationally, in an Answer Time session on Nov. 28, 2023, from noon to 1 p.m. EST (9-10 a.m. PST) here on our Tumblr!

Like Callie, how did their unique backgrounds and previous experience, prepare them for this role? What are they excited about as we return to the Moon?

🚨 Ask your questions now by visiting https://nasa.tumblr.com/ask.

Diane Dailey started her career at NASA in 2006 in the space station Environmental Control and Life Support Systems (ECLSS) group. As an ECLSS flight controller, she logged more than 1,700 hours of console time, supported 10 space shuttle missions, and led the ECLSS team. She transitioned to the Integration and System Engineering (ISE) group, where she was the lead flight controller for the 10th and 21st Commercial Resupply Services missions for SpaceX. In addition, she was the ISE lead for NASA’s SpaceX Demo-1 and Demo-2 crew spacecraft test flights. Dailey was also a capsule communicator (Capcom) controller and instructor.

She was selected as a flight director in 2021 and chose her call sign of “Horizon Flight” during her first shift in November of that year. She has since served as the Lead Flight director for the ISS Expedition 68, led the development of a contingency spacewalk, and led a spacewalk in June to install a new solar array on the space station. She is currently working on development of the upcoming Artemis II mission and the Human Lander Systems which will return humanity to the moon. Dailey was raised in Lubbock, Texas, and graduated from Texas A&M University in College Station with a bachelor’s degree in biomedical engineering. She is married and a mother of two. She enjoys cooking, traveling, and spending time outdoors.

Chloe Mehring started her NASA career in 2008 in the Flight Operations’ propulsion systems group and supported 11 space shuttle missions. She served as propulsion support officer for Exploration Flight Test-1, the first test flight of the Orion spacecraft that will be used for Artemis missions to the Moon. Mehring was also a lead NASA propulsion officer for SpaceX’s Crew Dragon spacecraft and served as backup lead for the Boeing Starliner spacecraft. She was accepted into the 2021 Flight Director class and worked her first shift in February 2022, taking on the call sign “Lion Flight”. Since becoming certified, she has worked over 100 shifts, lead the NG-17 cargo resupply mission team, and executed two United States spacewalks within 10 days of each other. She became certified as a Boeing Starliner Flight Director, sat console for the unmanned test flight in May 2022 (OFT-2) and will be leading the undock team for the first crewed mission on Starliner in the spring of next year. She originally is from Mifflinville, Pennsylvania, and graduated with a bachelor’s degree in aerospace engineering from The Pennsylvania State University in State College. She is a wife, a mom to one boy, and she enjoys fitness, cooking and gardening.


Tags
8 years ago
From The Vantage Point Of The International Space Station, Astronaut Shane Kimbrough (@astro_kimbrough)

From the vantage point of the International Space Station, astronaut Shane Kimbrough (@astro_kimbrough) captured this image over the Earth, writing “Looking west over the Red Sea, Saudi Arabia and Egypt.  #EarthArt from the amazing space station.”

The space station serves as the world's laboratory for conducting cutting-edge microgravity research, and is the primary platform for technology development and testing in space to enable human and robotic exploration of destinations beyond low-Earth orbit, including asteroids and Mars.

1 year ago
Hello Again👋

Hello again👋

Welcome back to week number four of Mindful Monday, 2023. It’s great to see all y’all 🧘

If you’re into the cosmos and mindfulness, we think you’re gonna LOVE this. This week, we invite you to bask in the glow of a Uranian sunset as you turn on, tune in, and space out to relaxing music and stunning ultra-high-definition visuals of our cosmic neighborhood. 🌄

Sounds good, right? Of course, it does. Mysterious, even. You can watch even more Space Out episodes on NASA+, a new no-cost, ad-free streaming service.

Why not give it a try? Because just a few minutes this Monday morning can make all the difference to your entire week, as @nasa helps to bring mindfulness from the stars and straight to you. 

🧘WATCH: Space Out with NASA: Uranian Sunset. 12/18 at 1pm EST🧘

Space Out with NASA: Uranian Sunset
YouTube
Bask in the glow of a Uranian sunset as you turn on, tune in, and space out to relaxing music and stunning ultra-high-definition visuals of
Loading...
End of content
No more pages to load
  • alienlamp
    alienlamp liked this · 3 years ago
  • nasaadi3
    nasaadi3 reblogged this · 4 years ago
  • nasaadi3
    nasaadi3 liked this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags