BMW’s Self Driving Motorcycle
BMW developed a self-driving version of its R1200GS, a motorcycle that it spent more than two years developing. The motorcycle, sans rider, can start, accelerate, lean into turns and stop all on its own. The company explained that it created the self-driving motorcycle not for consumers but to learn more about how it can implement new safety features.
Stefan Hans, a BMW safety engineer says “The prototype helps us to expand our knowledge about the vehicle’s dynamics so that we can classify the rider’s behavior and determine if a future situation will become dangerous or not, If so, we can inform, warn or intervene directly.” The bike will be used to develop new safety systems aimed at supporting inattentive drivers.
#artificialintelligence #machinelearning #industry #data #motorcycle #datascience #ai #technology #tech #impact #BMW #futuretech #future #innovation #autonomous #bigdata #airevolution #safety #engineer https://www.instagram.com/p/BrxpKLSBrAh/?utm_source=ig_tumblr_share&igshid=ph13e0cytn1z
Get the facts about your next phone.
Good to park here.
It’s fine.
Bluetooth FM Transmitter Car Kit
Patients who claim they are victims of botched robotic surgery are suing. Doctors say the state-of-the-art surgery isn’t for everyone, or every procedure.
See the complete story.
#marsisred #earthisblue #MAVENmission #NASA
“Both Mars and Earth had early atmospheres that were heavy, massive, and extraordinarily rich in CO2. While Earth’s carbon dioxide got absorbed into the oceans and locked up into carbonate rocks, Mars was unable to do the same, as its oceans were too acidified. The presence of sulfur dioxide led to Martian oceans that were rich in sulfuric acid. This led to geology of Mars we’ve discovered with rovers and landers, and pointed to a different cause — the solar wind — as the culprit in the mystery of the missing Martian atmosphere.
Thanks to NASA’s MAVEN mission, we’ve confirmed that this story is, in fact, the way it happened. Some four billion years ago, the core of Mars became inactive, its magnetic field disappeared, and the solar wind stripped the atmosphere away. With our magnetic field intact, our planet will remain blue and alive for the foreseeable future. But for a smaller world like Mars, its time ran out long ago. At last, we finally know why.”
For most of the 20th century, we knew that Earth had a carbon dioxide-rich past for its atmosphere, but that those atmospheric molecules were deposited into the ocean and precipitated or fossilized out as carbonate rocks like limestone and dolomite. We assumed that Mars, which once had a thick atmosphere and a water-rich surface, lost its atmosphere the same way. But landers and rovers changed all of that, discovering very little in the way of carbonate rocks, meaning that there must have been a different process at play to strip the Martian atmosphere away.
It wasn’t until NASA’s MAVEN mission that we knew for sure! Come learn why Mars is red and dead while Earth is blue and alive today.
Next Robotic Landers to the Moon From Nine Companies
We sent the first humans to land on the Moon in 1969. Since then, only of 12 men have stepped foot on the lunar surface – but we left robotic explorers behind to continue gathering science data. And now, we’re preparing to return. Establishing a sustained presence on and near the Moon will help us learn to live off of our home planet and prepare for travel to Mars.
To help establish ourselves on and near the Moon, we are working with a few select American companies. We will buy space on commercial robotic landers, along with other customers, to deliver our payloads to the lunar surface. We’re even developing lunar instruments and tools that will fly on missions as early as 2019!
Through partnerships with American companies, we are leading a flexible and sustainable approach to deep space missions. These early commercial delivery missions will also help inform new space systems we build to send humans to the Moon in the next decade. Involving American companies and stimulating the space market with these new opportunities to send science instruments and new technologies to deep space will be similar to how we use companies like Northrop Grumman and SpaceX to send cargo to the International Space Station now. These selected companies will provide a rocket and cargo space on their robotic landers for us (and others!) to send science and technology to our nearest neighbor.
So who are these companies that will get to ferry science instruments and new technologies to the Moon?
Here’s a digital “catalogue” of the organizations and their spacecraft that will be available for lunar services over the next decade:
Pittsburg, PA
Littleton, CO
Cedar Park, TX
Houston, TX
Littleton, CO
Mojave, CA
Cape Canaveral, FL
Edison, NJ
Cambridge, MA
We are thrilled to be working with these companies to enable us to investigate the Moon in new ways. In order to expand humanity’s presence beyond Earth, we need to return to the Moon before we go to Mars.
The Moon helps us to learn how to live and work on another planetary body while being only three days away from home – instead of several months. The Moon also holds enormous potential for testing new technologies, like prospecting for water ice and turning it into drinking water, oxygen and rocket fuel. Plus, there’s so much science to be done!
The Moon can help us understand the early history of the solar system, how planets migrated to their current formation and much more. Understanding how the Earth-Moon system formed is difficult because those ancient rocks no longer exist here on Earth. They have been recycled by plate tectonics, but the Moon still has rocks that date back to the time of its formation! It’s like traveling to a cosmic time machine!
Join us on this exciting journey as we expand humanity’s presence beyond Earth.
Learn more about the Moon and all the surprises it may hold: https://moon.nasa.gov
Find out more about today’s announcement HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
https://www.amazon.com/Automatic-Commercial-Electric-Slicer-Stainless/dp/B01M71HI09/ref=sr_1_6?adFormat=grid&adId=searchbar&adMode=search&adType=smart&creativeASIN=searchbar&imprToken=kNtVG3E1SBucWtDvfzCtyQ&impressionTimestamp=1566837362583&keywords=electric+kitchenware&linkCode=w42&qid=1566837362&ref-refURL=https%3A%2F%2Fleadingedgedeals.com%2F&s=gateway&sig=undefined&sigts=undefined&slotNum=0&sr=8-6
https://www.leadingedgedeals.com
News Information & Deals Online !! Come Shop With Us !!
Price:$1,999.00 + $150.00 shipping
KWS Automatic Commercial 1050w Electric Meat Slicer 12" Stainless Steel
Medical science is hard at it.
A research team in the Department of Electrical and Electronic Information Engineering and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology developed 5-μm-diameter needle-electrodes on 1 mm × 1 mm block modules. This tiny needle may help solve the mysteries of the brain and facilitate the development of a brain-machine interface. The research results were reported in Scientific Reports on Oct 25, 2016.
(Image caption: Extracellular needle-electrode with a diameter of 5 μm mounted on a connector)
The neuron networks in the human brain are extremely complex. Microfabricated silicon needle-electrode devices were expected to be an innovation that would be able to record and analyze the electrical activities of the microscale neuronal circuits in the brain.
However, smaller needle technologies (e.g., needle diameter < 10 μm) are necessary to reduce damage to brain tissue. In addition to the needle geometry, the device substrate should be minimized not only to reduce the total amount of damage to tissue but also to enhance the accessibility of the electrode in the brain. Thus, these electrode technologies will realize new experimental neurophysiological concepts.
A research team in the Department of Electrical and Electronic Information Engineering and the EIIRIS at Toyohashi University of Technology developed 5- μm-diameter needle-electrodes on 1 mm × 1 mm block modules.
The individual microneedles are fabricated on the block modules, which are small enough to use in the narrow spaces present in brain tissue; as demonstrated in the recording using mouse cerebrum cortices. In addition, the block module remarkably improves the design variability in the packaging, offering numerous in vivo recording applications.
“We demonstrated the high design variability in the packaging of our electrode device, and in vivo neuronal recordings were performed by simply placing the device on a mouse’s brain. We were very surprised that high quality signals of a single unit were stably recorded over a long period using the 5-μm-diameter needle,” explained the first author, Assistant Professor Hirohito Sawahata, and co-author, researcher Shota Yamagiwa.
The leader of the research team, Associate Professor Takeshi Kawano said: “Our silicon needle technology offers low invasive neuronal recordings and provides novel methodologies for electrophysiology; therefore, it has the potential to enhance experimental neuroscience.” He added, “We expect the development of applications to solve the mysteries of the brain and the development of brain–machine interfaces.”
Consider this when considering buying electronics.