"To have knowledge, you must first have reverence for the Lord.Stupid people have no respect for wisdom and refuse to learn."
The Book Of Proverbs 1;7
1. Small satellites is the umbrella term for describing any satellite that is the size of an economy-sized washing machine all the way down to a CubeSat, which you can hold in your hand.
2. CubeSats come in multiple sizes defined by the U, which stands for unit. Making it the Unit unit. 1U CubeSats are cubes 4 inches (10 cm) on a side, weighing as little as 4 pounds. A 3U CubeSat is three 1Us hooked together, resembling a flying loaf of bread. A 6U CubeSat is two 3Us joined at the hip, like a flying cereal box. These are the three most common configurations.
Photo courtesy of the University of Michigan
3. CubeSats were developed by researchers at California Polytechnic State University and Stanford University who wanted a standardized format to make launching them into space easier and to be small enough for students to get involved in designing, building and launching a satellite.
4. Small satellites often hitch a ride to space with another mission. If there’s room on the rocket of a larger mission, they’re in. CubeSats in particular deploy from a p-pod – poly-picosatellite orbital deployer – tucked on the underside of the upper stage of the rocket near the engine bell.
5. Small sats test technology at lower costs. Their small size and the relatively short amount of time it takes to design and build a small satellite means that if we want to test a new sensor component or a new way of making an observation from space, we can do so without being in the hole if it doesn’t work out. There’s no environment on Earth than can adequately recreate space, so sometimes the only way to know if new ideas work is to send them up and see.
6. Small sats force us to think of new ways to approach old problems. With a satellite the size of a loaf of bread, a cereal box, or a microwave oven, we don’t have a lot of room for the science instrument or power to run it. That means thinking outside the box. In addition to new and creative designs that include tape measures, customized camera lenses, and other off-the-shelf parts, we have to think of new ways of gathering all the data we need. One thing we’re trying out is flying small sat constellations – a bunch of the same kind of satellite flying in formation. Individually, each small sat sees a small slice of Earth below. Put them together and we start to see the big picture.
7. Small sats won’t replace big satellites. Size does matter when it comes to power, data storage, and how precise your satellite instrument is. Small satellites come with trade-offs that often mean coarser image resolution and shorter life-spans than their bigger sister satellites. However, small sat data can complement data collected by big satellites by covering more ground, by passing over more frequently, by flying in more dangerous orbits that big satellites avoid, and by continuing data records if there’s a malfunction or a wait between major satellite missions. Together they give us a more complete view of our changing planet.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Well,well NASA just go and find some alien friends....(post by sci universe)
Well this is a bummer, but a good call considering how media is like 😄 NASA will host a teleconference at 2 p.m. EDT Monday, Sept. 26, to present new “surprising evidence” of activity from images captured by the Hubble Space Telescope.
Europa is thought to host an ocean of liquid water beneath its icy surface, and is thus considered to be one of the best places to search for alien life elsewhere in the Solar System.
If you want to know more about Europa, I recommend this infographic by space.com.
Nikola Tesla once paid an overdue hotel bill with a ‘working model’ of his 'death beam’. He warned the staff never to open it, describing it as a war-ending particle weapon that could stop invading armies and make warfare pointless. After his death in 1943, someone finally pried the box open and found nothing but a bunch of harmless old electrical components. Source
LETS DO IT TOGETHER NASA :)
As part of our Asteroid Redirect Mission (ARM), we plan to send a robotic spacecraft to an asteroid tens of millions of miles away from Earth, capture a multi-ton boulder and bring it to an orbit near the moon for future crew exploration.
This mission to visit a large near-Earth asteroid is part of our plan to advance the new technologies and spaceflight experience needed for a human mission to the Martian system in the 2030s.
The robotic spacecraft, powered by the most advanced solar electric propulsion system, will travel for about 18 months to the target asteroid.
After the spacecraft arrives and the multi-ton boulder is collected from the surface, the spacecraft will hover near the asteroid to create a gravitational attraction that will slightly change the asteroid’s trajectory.
After the enhanced gravity tractor demonstration is compete, the robotic vehicle will deliver the boulder into a stable orbit near the moon. During the transit, the boulder will be further imaged and studied by the spacecraft.
Astronauts aboard the Orion spacecraft will launch on the Space Launch System rocket to explore the returned boulder.
Orion will dock with the robotic vehicle that still has the boulder in its grasp.
While docked, two crew members on spacewalks will explore the boulder and collect samples to bring back to Earth for further study.
The astronauts and collected samples will return to Earth in the Orion spacecraft.
This mission will demonstrate future Mars-level exploration missions closer to home and will fly a mission with technologies and real life operational constraints that we’ll encounter on the way to the Red Planet. A few of the capabilities it will help us test include:
Solar Electric Propulsion – Using advanced Solar Electric Propulsion (SEP) technologies is an important part of future missions to send larger payloads into deep space and to the Mars system. Unlike chemical propulsion, which uses combustion and a nozzle to generate thrust, SEP uses electricity from solar arrays to create electromagnetic fields to accelerate and expel charged atoms (ions) to create a very low thrust with a very efficient use of propellant.
Trajectory and Navigation – When we move the massive asteroid boulder using low-thrust propulsion and leveraging the gravity fields of Earth and the moon, we’ll validate critical technologies for the future Mars missions.
Advances in Spacesuits – Spacesuits designed to operate in deep space and for the Mars surface will require upgrades to the portable life support system (PLSS). We are working on advanced PLSS that will protect astronauts on Mars or in deep space by improving carbon dioxide removal, humidity control and oxygen regulation. We are also improving mobility by evaluating advances in gloves to improve thermal capacity and dexterity.
Sample Collection and Containment Techniques – This experience will help us prepare to return samples from Mars through the development of new techniques for safe sample collection and containment. These techniques will ensure that humans do not contaminate the samples with microbes from Earth, while protecting our planet from any potential hazards in the samples that are returned.
Rendezvous and Docking Capabilities – Future human missions to Mars will require new capabilities to rendezvous and dock spacecraft in deep space. We will advance the current system we’ve developed with the international partners aboard the International Space Station.
Moving from spaceflight a couple hundred miles off Earth to the proving ground environment (40,000 miles beyond the moon) will allow us to start accumulating experience farther than humans have ever traveled in space.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Visit the official JPl site of NASA and get the latest news of space.
Oh I want something just like this....
Milky Way Over Vegas from Valley of Fire [OC] [1365x2048] Visit http://spaceviewsandbeyond.blogspot.com/2017/06/milky-way-over-vegas-from-valley-of.html for more space pics
Check that out!
The sky may not be falling, but it can certainly seem that way during a meteor shower. Shooting stars, as meteors are sometimes called occur when rock and debris in space fall through the Earth’s atmosphere, leaving a bright trail as they are heated to incandescence by friction with the air. Sometimes the number of meteors in the sky increases dramatically, becoming meteor showers. Some showers occur annually or at regular intervals as the Earth passes through the trail of dusty debris left by a comet. Here’s a guide to the top meteor showers expected in 2017.
At its peak this shower will have about 40 meteors per hour. The parent comet is 2003 EH1, which was discovered in 2003. First quarter moon sets after midnight and meteors radiate from the constellation Bootes.
This shower will have up to 60 meteors per hour at its peak and is produced by dust particles left behind by comet Halley, which has been known and observed since ancient times. The shower runs annually from April 19 to May 28. The waxing gibbous moon will block out many of the fainter meteors this year. Meteors will radiate from the constellation Aquarius.
The annual Perseid shower will have up to 60 meteors per hour at its peak. It is produced by comet Swift-Tuttle. The Perseids are famous for producing a large number of bright meteors. The shower runs annually from July 17 to August 24. The waning gibbous moon will block out many of the fainter meteors this year, but the Perseids are so bright and numerous that it should still be a good show. Meteors will radiate from the constellation Perseus.
This is a minor shower that will produce only about 10 meteors per hour. It is produced by dust grains left behind by comet 21P Giacobini-Zinner, which was first discovered in 1900. The Draconids is an unusual shower in that the best viewing is in the early evening instead of early morning like most other showers. The shower runs annually from October 6-10 and peaks this year on the the night of the 7th. Unfortunately, the nearly full moon will block all but the brightest meteors this year. If you are extremely patient, you may be able to catch a few good ones. Meteors will radiate from the constellation Draco.
The Geminids may be the best shower, producing up to 120 meteors per hour at its peak. It is produced by debris left behind by an asteroid known as 3200 Phaethon, which was discovered in 1982. The shower runs annually from December 7-17. The waning crescent moon will be no match for the Geminids this year. The skies should still be dark enough for an excellent show. Meteors will radiate from the constellation Gemini, but can appear anywhere in the sky.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Cosmicportal said "True love is not blind" yeah, he is absolutely right, but we could also add something to it so i think its better to say "True love is not blind enough to ignore feelings"...this could make that evenmore beautiful.