This will be COOL! Wish I lived closer to the totality area!
The eclipse should be visible to some extent across the continental U.S. Here’s map of its path.
Our eclipse page can help you find the best viewing locations by longitude and latitude: eclipse.gsfc.nasa.gov/SEgoogle/SEgoogle2001/SE2017Aug21Tgoogle.html
Want to know more about citizen science projects? Find a list of citizen science projects for the eclipse: https://eclipse.aas.org/resources/citizen-science
Get your eclipse viewing safety glasses beforehand: eclipse2017.nasa.gov/safety
In this interactive, 3D simulation of the total eclipse on August 21, 2017, you can see a view of the eclipse from anywhere on the planet:
http://eyes.jpl.nasa.gov/eyes-on-eclipse.html
Join the conversation on social media. Tag your posts: #Eclipse2017.
Twitter: @NASASolarSystem, @NASA, @NASASunEarth Facebook: NASA Solar System
Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Will always love #Castle, even in its end, living on through FanFiction. Also love weather (my career, too!), my hub and our lovely cats. Southern New England USA.
Gorgeous CB!!!
So adorable! #kittens
Oh Hi there! Hope everything is just going swell 👋🐱❤️✨
Launch was delayed. Tentatively scheduled for Thursday 12/15 at 826 AM EST. Lots more information available through www.nasa.gov/cygnss . More great satellite info upcoming!
The same GPS technology that helps people get where they’re going in a car will soon be used in space in an effort to improve hurricane forecasting. The technology is a key capability in a NASA mission called the Cyclone Global Navigation Satellite System (CYGNSS).
The CYGNSS mission, led by the University of Michigan, will use eight micro-satellite observatories to measure wind speeds over Earth’s oceans, increasing the ability of scientists to understand and predict hurricanes. Each microsatellite observatory will make observations based on the signals from four GPS satellites.
The CYGNSS microsatellite observatories will only receive signals broadcast directly to them from GPS satellites already orbiting the Earth and the reflection of the same satellite’s signal reflected from the Earth’s surface. The CYGNSS satellites themselves will not broadcast.
The use of eight microsatellite observatories will decrease the revisit time as compared with current individual weather satellites. The spacecraft will be deployed separately around the planet, with successive satellites passing over the same region every 12 minutes.
This will be the first time that satellites can peer through heavy tropical rainfall into the middle of hurricanes and predict how intense they are before and during landfall.
As the CYGNSS and GPS constellations orbit around the Earth, the interaction of the two systems will result in a new image of wind speed over the entire tropics every few hours, compared to every few days for a single satellite.
Another advantage of CYGNSS is that its orbit is designed to measure only in the tropics…where hurricanes develop and are most often located. The focus on tropical activity means that the instruments will be able to gather much more useful data on weather systems exclusively found in the tropics. This data will ultimately be used to help forecasters and emergency managers make lifesaving decisions.
Launch of CYGNSS is scheduled for 8:24 a.m. EST on Monday, Dec. 12 from our Kennedy Space Center in Florida. CYGNSS will launch aboard an Orbital ATK Pegasus XL rocket, which will be deployed from Orbital’s “Stargazer” L-1011 carrier aircraft.
Pegasus is a winged, three-stage solid propellant rocket that can launch a satellite into low Earth orbit. How does it work? Great question!
After takeoff, the aircraft (which looks like a commercial airplane..but with some special quirks) flies to about 39,000 feet over the ocean and releases the rocket.
After a five-second free fall in a horizontal position, the Pegasus first stage ignites. The aerodynamic lift, generated by the rocket’s triangle-shaped wing, delivers the payload into orbit in about 10 minutes.
Pegasus is used to deploy small satellites weighing up to 1,000 pounds into low Earth orbit.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Beautiful!!!
The Pleiades in Infrared
OMG! Gorgeous! :)
Lapland Northern Lights
js
So cool! #lightning
“the calm after the storm” - Lightening reflecting of the water
Beautiful! #clouds #nature
The photographer calls the effect of this fog viewed from Mt. Tamalpais State Park near San Francisco “cotton candy waves” in the clouds. What do you think?
Very nice!
Earth from SPACE